Se	at No	o.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY	
		BARCH – SEMESTER-IV – • EXAMINATION – SUMMER 2015	
Sı	ıbje	ct Code: 1045003 Date: 13/05/2015	
Sı	ıbje	ct Name: Structure IV	
Ti	ime:	10:30 am-12:30 pm Total Marks: 50	
In		tions:	
		1. Attempt all questions.	
		 Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
		4. Use of IS 456 (2000) and SP-16 is permitted	
		•	
Q.1	(a)	Explain briefly Limit State Method	04
	(b)	Define: (i) Characteristic strength and (ii) Ductility	03
0.4	(c)	State different forms of limit state of serviceability	03
Q.2	(a)	State merits and demerits of working stress method Differentiate between singly rainforced and doubly rainforced beams	05 05
	(b)	Differentiate between singly reinforced and doubly reinforced beams OR	US
	(b)	Explain (i) Balanced section (ii) Over reinforced and (iii) Under reinforced section	05
	(8)		••
Q.3		Design a rectangular RC beam, having 300 mm width. The beam is simply	10
		supported on effective span of 5.0 m. It is loaded with service load of a u.d.l. of 20	
		kN/ m including self weight. Use M - 20 concrete and Fe - 415 steel. Take $\gamma_f = 1.5$.	
		Also sketch the details of the designed beam. OR	
Q.3		Explain (i) Types of isolated column footings with sketches and (ii) Bearing	10
Q.C		capacity of soil	
Q.4		Design a RCC square short column subjected to an axial working load of 800 kN.	10
		Concrete used is M - 20 and steel Fe - 415. Provide 1% steel. Take $\gamma_f = 1.5$. Sketch	
		the reinforcement details showing longitudinal steel and lateral ties.	
		OR	
Q.4		Design isolated square footing (Pad type) for a square column 300 mm x 300 mm	10
		for axial load of 750 kN. Use concrete grade $M - 20$ and $Fe - 415$ steel grade.	
		Take safe bearing capacity of soil 150 kN/ m ² . Check for shear is not required.	
		Draw neat sketch showing sectional elevation and plan of the designed footing.	
Q.5		Design one-way slab for the office building 3.5 m x 9.0 m. The slab is resting on	10
		300 mm thick wall and resisting live load of 3.0 kN/ m ² . Assume floor finish load	
		1.0 kN/m^2 . Adopt M – 20 concrete and Fe – 415 steel. Check the slab for control of cracking. Sketch the reinforcement details.	
		OR	
Q.5			10
		Landing (iii) Rise (iv) Tread (v) Nosing (vi) Waist slab (vii) soffit.	
		Draw detail of reinforcement in staircase from the following data for one	
		flight.(i)Landing width = 1.2 m, Riser = 150 mm, Tread = 300 mm (ii) Waist	
		slab overall thickness = 200 mm.(iii) Main steel = 12 mm dia. at 120 mm c/c.(iv)	
		Distribution steel = 8 mm dia. bars at 175 mm c/c.(v) Effective cover = 25	
		mm.(vi) Assume landings on both the sides and no. of steps 10	
