07

Seat 1	NO		Emonnent No
•		GUJARAT TECHNOLOGI BE - SEMESTER-I &II (NE lode: 2110016 ame: Basic Electronics	ICAL UNIVERSITY W) EXAMINATION – SUMMER-2019 Date: 07/06/2019
		30 AM TO 01:00 PM	Total Marks: 70
Instr			
	2.	Make suitable assumptions wl Figures to the right indicate fu	
Q.1	(a)	Find correct option	
	1.	Which resistor is smallest in single (a) $1000 \text{ M} \Omega$, 100 W	
		(b) $1000 \text{ K}\Omega, 0.5 \text{ W}$	(d) 10Ω , $1W$
	2.	-	F connected in parallel. This parallel module is .3 μF . what is equivalent capacitance (c) 0.15 μF
		(b) 0.6 μF	(d) 0.0 μF
	3.	OPAMP 1 having higher value Which OPAMP is batter?	ue of CMRR compare to OPAMP 2.
		(a) OPAMP 1	(c) OPAMP 2
		(b) Both	(d) batter OPAMP cannot checked with CMRR
	4.	EX OR gate having 4 inputs A (a) 0	=B=C=1, D=0 Output Y= (c) 1
		(b) Don't care	(d) EX OR gate with 4 inputs is not possible.
	5.	Ideal current source having so (a) 0	urce resistance = (c) 1 Ω
		(b) 100 KΩ	(d) infinity
	6.	OP AMP can Perform (a) NOT gate logic	(c) Integration Operation
		(b) LOG operation	(d)All of above
	7.	Following of which digital sig (a) X(n)=0, for all values	nal is one of the type of impulse signal? of n
		(b) $X(n)=1$, for all values	of n
		(c) $X(n)=1$ for $n=4$, $X(n)=1$	=0 elsewhere

(d) X(n)=0 for n < 0, X(n)=1 for n > 0

	(b)	Do as directed	07
	1.	Define: Resistivity	
	2. 3.	List out all digital modulation systems. List out all Analog modulation systems Define CMRR, PSRR for OPAMP	
	3. 4.	Define Noise in communication.	
	5.	Delta connected resistors having equal value of 3 Ω . Find all equivalent star	
	٠.	connected resistance values.	
	6.	Which theorem can apply in NODE analysis and MESH analysis for network	
		solution.?	
	7.	List out any five OPAMP applications.	
Q.2	(a)	Write characteristic of IDAL OPAMP.	03
	(b)	What is universal GATE? Make EX-OR gate using one of the universal gate.	04
	(c)	Explain the equivalent circuit of OP-AMP with suitable diagram. Explain the inverting and NON inverting operation of OP-AMP	07
		inverting and INON inverting operation of OI -AIVII	
Q.3	(a)	What is slew rate in OP AMP. Its value should be higher or lower for OPAMP	03
~	(4)	to behave near to ideal.?	•
	(b)	What is K MAP. Reduce the given function using K-map.	04
		$F(A,B,C,D) = \Sigma mi (0, 1, 2, 3, 5, 7, 8, 9, 10, 11,13,14).$	
	(c)	state the NORTON's theorem . Find out current through 40 Ω load resister	07
		from node A to node B by using it. (Fig 1)	
		10 Ω A 20 Ω	
		10v	
		40 Ω	
		<u> </u>	
		B	
		L B	
		Fig (1)	
Q.4	(a)	Define potential, potential difference, current.	03
	(b)	How to use ammeter and voltmeter to read current and voltage.? List out sensor	04
		to measure temperature.	
	(c)	State superposition theorem. Explain by taking a example.	07
0 -	(.)	Camara I ANI MANI and WANI	0.2
Q.5	(a) (b)	Compare LAN, MAN and WAN State and explain De Morgan's Theorem with truth table	03 04
	(D)	State and explain De Morgan's Theorem with truth table	V4
	(c)	OP-AMP with non-inverting configuration $Vcc = \pm 15 \text{ V}$, input voltage = 1 V,	07
	(0)	input resistance Ri= $1K\Omega$.	07
		What is the value of output voltage if (1) feedback resistance Rf=0 Ω	
		(2) feedback resistance Rf= infinity Ω (3) feedback resistance Rf=1 Ω	
Q.6	(a)	Define AM, FM and PM.	03
	(b)	Draw and explain functional block diagram of a signal processing system	04
	(c)	Explain sampling, quantization and codding process for PCM.	^-
0.7	(a)	Compare open loop and alose loop system	07
Q.7	(a) (b)	Compare open loop and close loop system Write short note on Cellular communication system	03 04
	(b) (c)	Explain any seven rules for block diagram reduction of control system with	V4
	(0)	necessary diagram.	07
		******	07