Seat No.: ____

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 2110014 Date: 06/06/2019

Subject Name: Calculus

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- Question No.1 is compulsory. Attempt any four out of remaining six questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Objective Question (MCQ)

Marks 07

07

(a)

For the Jacobian J, value of the $J \cdot J'$ is 1.

(a)
$$1$$
 (b) -1 (3) 0 (4) 2

2.

Value of
$$\frac{dy}{dx}$$
 for $ax^2 + 2hxy + by^2 = 1$ is
$$(a) \frac{hx + by}{ax + hy} (b) \frac{ax + hy}{hx + by} (c) - \frac{ax + hy}{hx + by} (d) - \frac{hx + by}{ax + hy}$$

- $u = \sin^{-1}\frac{x}{y}$ is a homogeneous function of degree
 - (a) 1/2 (b) 0 (c) 1 (d) -1
- 4. The curve r = 2 is
 - (a) straight line (b) point at distance '2' on initial line
 - (c) circle with centre origin and radius 2
- 5.

If
$$x = r\cos\theta$$
, $y = r\sin\theta$, then which is correct?
(a) $r = x^2 + y^2$, $\theta = \frac{x}{y}$ (b) $r = \sqrt{x^2 + y^2}$, $\theta = \tan\frac{y}{x}$

(c)
$$r = x^2 + y^2$$
, $\theta = \tan^{-1} \frac{y}{x}$ (d) $r = \sqrt{x^2 + y^2}$, $\theta = \tan^{-1} \frac{y}{x}$

- Infinite Sequence $\{1,1,1,\dots\}$ is 6.
 - (a) convergent (b) divergent (c) oscillatory (d) None of these
- 7. Infinite Series $1 + 1 + 1 + \cdots is$
 - (a) convergent (b) divergent (c) oscillatory (d) None of these

(b)
1. Infinite series
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - + \cdots$$
 is

(a) convergent (b) divergent (c) oscillatory (d) None of these

- 2. Curve $(y-1)^2 = x - 5$ is symmetric to
 - (a) X-axis (b) line y = -x (c) line y = x (d) Y-axis
- 3. \lim $\boldsymbol{\chi}$

$$(a)^{\frac{1}{\pi}}$$
 (b) 0 (c) ∞ (d) π

- The sum of the series $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is
 - (a) ∞ (b) 1/2 (c) 2 (d) 1
- The Maclaurin series for the function $(x + 1)^2$ is

(a)
$$1 + x + x^2$$
 (b) $1 + 2x + x^2$ (c) $1 + x$ (d) $x + x^2$

- 6. The straight line y = 2 is revolved about x- axis between $0 \ll x \ll 4$. The generated solid is
 - (a)cone (b) sphere (c) cuboid (d) cylinder
- For a series $\hat{\Sigma}_{n=1}^{\infty} a_n$, if $\lim_{n \to \infty} a_n \neq 0$, then
 - (a) series is convergent (b) series is divergent
 - (c) sum of series is finite number
 - (d) series is conditionally convergent

Q.2 (a) Find the Taylor series for
$$f(x) = \frac{1}{x}$$
 at $a = 2$.

(b) Is the series absolutely convergent or conditionally convergent?

$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \cdots$$
(c) (i) Discuss the convergence of the series
$$\frac{x}{1 \cdot 2} + \frac{x^2}{2 \cdot 3} + \frac{x^3}{3 \cdot 4} + \cdots$$
(ii) Find the Radius of convergence for the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$.

Q.3 (a) Evaluate $\lim_{x \to 0} x \log x$
(b) Trace the curve $y^2(a + x) = x^2(a - x)$, $a > 0$.

(c) Prove that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is convergent if $p > 1$ and divergent if $p \ll 1$.

Q.4 (a) Evaluate $\int_0^2 \frac{dx}{(x-1)^{3/2}}$.

(b) Find the equation of the tangent plane and normal line to the surface $x^2 + y^2 + z - 9 = 0$ at $(1,2,4)$.

(c) (i) Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$.

(ii) Evaluate $\lim_{x \to \frac{\pi}{2}} (1 - \cos x)^{\tan x}$

Q.5 (a) If $u = f(x - y, y - z, z - x)$, prove that $u_x + u_y + u_x = 0$.

(b) Find maximum and minimum values. $f(x,y) = 2(x^2 - y^2) - x^4 + y^4$

(c) If $u = tan^{-1} \binom{x^2 + y^2}{x - y}$, prove that (i) $xu_x + yu_y = \sin 2u$ (ii) $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = 2\sin u\cos 3u$

Q.6 (a) The region between the curve $y = \sqrt{x}$, $0 \ll x \ll 4$ and the x-axis is revolved about the x-axis to generate a solid. Find its volume.

(b) Using volume by slicing method, find the volume of a cylinder with radius 'r' and height 'k'.

(c) Evaluate $\iint_R x \, dx \, dy$; R is triangle $(0,0)$, $(1,0)$, $(1,1)$ using transformations $x = u, y = uv$.

Q.7 (a) Evaluate $\iint_R x \, dx \, dy$; R is triangle $(0,0)$, $(1,0)$, $(1,1)$, using transformations $x = u, y = uv$.

Q.7 (a) Evaluate $\iint_R x \, dx \, dy$; R is triangle $(0,0)$, $(1,0)$, $(1,1)$, $(1,1)$ using transformations $x = u, y = uv$.

Q.7 (a) Evaluate $\iint_R x \, dx \, dy$; R is triangle $(0,0)$, $(1,0)$, $(1,1)$, $(1,1)$ using transformations $x = u, y = uv$.

Q.7 (a) Evaluate $\iint_R x \, dx \, dy$; R is triangle $(0,0)$, $(1,0)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$, $(1,1)$,
