Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- 1st / 2nd • EXAMINATION – SUMMER • 2014

Subject Code: 110008 Date: 19-06-2014

Subject Name: Mathematics - I

Time: 02:30 pm - 05:30 pm Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q. 1. (a) (i) Given that
$$1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$$
, $x \ne 0$ find $\lim_{x \to 0} u(x)$ [2]

(ii) Use Lagrange's Mean Value theorem to prove that
$$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2} \ , \quad 0 < a < b$$

(b) Expand
$$\tan^{-1} \left(\frac{\sqrt{1+x^2} - 1}{x} \right)$$
 in powers of x, using Maclaurin's Series. [4]

- (c) Express cos(a + h) as a series in powers of h and hence evaluate cos 44°. [4]
- Q. 2. (a) (i) Find the equation of the tangent plane and normal line to the surface $x^3 + 2xy^2 7z^2 + 3y + 1 = 0$ at (1, 1, 1).

(ii) Discuss the continuity of the function
$$f(x, y) = \frac{xy}{x^2 + y^2}$$
; $(x, y) \neq (0, 0)$ [4]
= 0; $(x, y) = (0, 0)$

(b) State Euler's theorem on homogeneous function. If $u = \sin^{-1} \left(\frac{x+y}{\sqrt{x} + \sqrt{y}} \right)$, prove that [4]

(i)
$$x \frac{\partial \mathbf{u}}{\partial x} + y \frac{\partial \mathbf{u}}{\partial y} = \frac{1}{2} \tan \mathbf{u}$$

(ii)
$$x^2 \frac{\partial^2 \mathbf{u}}{\partial x^2} + 2xy \frac{\partial^2 \mathbf{u}}{\partial x \partial y} + y^2 \frac{\partial^2 \mathbf{u}}{\partial y^2} = -\frac{\sin \mathbf{u} \cos 2\mathbf{u}}{4\cos^3 \mathbf{u}}$$

- (c) If $x = r \cos \theta$ and $y = r \sin \theta$ by finding J and J' separately, show that JJ' = 1. [4]
- Q. 3. (a) Discuss the convergence of the following series. [6]

(i)
$$\sum \frac{2+3\cos n}{n^3}$$
 (ii) $\sum ne^{-n^2}$ (iii) $\sum \frac{(-1)^{n-1}}{n\sqrt{n}}$

- (b) Find the area outside the circle $r = 2a \cos \theta$ and inside the cardioid $r = a (1 + \cos \theta)$. [4]
- (c) Find the surface area of the solid generated by revolving the cycloid $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ about its base. [4]
- Q. 4. (a) (i) Evaluate $\lim_{x \to a} \frac{\log(e^x e^a)}{\log(x a)}$ [2]
 - (ii) Evaluate $\iint_A y \, dx \, dy$ where A is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$
 - (b) Evaluate $\int_{0}^{3} \int_{1}^{\sqrt{4-y}} (x+y) dx dy$ by changing the order of integration. [4]
 - (c) Evaluate $\int_{0}^{1} \int_{0}^{1} dx dy$ by changing to polar co-ordinates. [4]
- Q. 5. (a) (i) For $f(x) = x^2$, $x \in [1, 5]$, find U(f, P) and L(f, P) for $P = \{1, 2, 3, 4, 5\}$ [2]
 - (ii) Find the area common to the circles r = a and $r = 2a\cos\theta$ using double integration. [4]
 - (b) Find the volume bounded by the cylinder $x^2 + z^2 = 1$, y = 0 and y + z = 3 using triple integration. [4]
 - (c) Evaluate $\iiint z(x^2 + y^2) dv$ over the volume of the cylinder $x^2 + y^2 = 1$ intercepted by the planes z = 2 and z = 3.
- Q. 6. (a) (i) If $\overline{F} = (y^2 z^2 + 3yz 2x)i + (3xz + 2xy)j + (3xy 2xz + 2z)k$, then show that [2] \overline{F} is a solenoidal.
 - (ii) Find the directional derivative of e^{2x-y+z} at the point (1, 1, -1) in a direction [4] towards the point (-3, 5, 6)
 - (b) Show that $\overline{F} = y^2 z^3 i + 2xyz^3 j + 3xy^2 z^2 k$ is a conservative vector field and find the corresponding potential function. [4]
 - (c) Verify that $\nabla \times (\nabla \times \overline{F}) = \nabla (\nabla \cdot \overline{F}) \nabla^2 \overline{F}$ of the vector field, $\overline{F} = 3xz^2 \mathbf{i} - yz\mathbf{j} + (x + 2z)\mathbf{k}$ [4]
- Q. 7. (a) (i) Check the convergence of the integral $\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$ [2]
 - (ii) Verify Green's theorem for $\oint_C (3x 8y^2) dx + (4y 6xy) dy$, where C is the boundary of triangle with vertices (0, 0), (1, 0) and (0, 1).
 - (b) Verify Stokes theorem for $\overline{F} = (2x y)i yz^2j y^2zk$, where S is the upper half of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
 - (c) Find the extreme value of $x^2 + y^2 + z^2$ under the constraint ax + by + cz = C [4]