Seat No.: _____

Enrolment No._____

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (OLD) EXAMINATION - SUMMER-2019

Subject Code: 110008 Date: 06/06/2019

Subject Name: Maths - I

Time: 10:30 AM TO 01:30 PM

Instructions:

- 1. Attempt any five questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 02 **Q.1**
 - (i) Evaluate: $\lim_{x \to 1} (1 x) \tan \left(\frac{\pi x}{2}\right)$ (ii) Evaluate: $\lim_{x \to 0} \left(\frac{1}{x}\right)^{1 \cos x}$ 02
 - (iii) Find Jacobian $\frac{\partial(u,v)}{\partial(x,v)}$ for functions $u = x \sin y$, $v = y \sin x$. 03
 - **(b)** (i) Sketch the region and find the area bounded by ellipse $\frac{x^2}{q} + \frac{y^2}{4} = 1$. 03
 - (ii) Using Lagrange's mean value theorem, prove that 04 $\frac{b-a}{1+b^2} < tan^{-1}b - tan^{-1}a < \frac{b-a}{1+a^2}$
- 0.2 (i) Verify Rolle's theorem for $f(x) = x(x+3)e^{-\frac{x}{2}}$ in $-3 \le x \le 0$. 04 (a)
 - (ii) Find two non-negative numbers whose sum is 9 such that the product of one number and the square of the other is maximum.
 - (b) (i) Prove that $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right) = \frac{1}{2} \left(x \frac{x^3}{3} + \frac{x^5}{5} \cdots \right)$. 04
 - (ii) Find the absolute maximum and minimum values of $f(x) = \frac{x^3}{x+2}$ in 03 interval [-1, 1].
- (i) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{n^n x^n}{(n+1)^n}$, x > 0. 04 **Q.3**
 - (ii) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$ 03
 - (b) (i) Test the convergence of the series: $\frac{1}{2} \frac{2}{5} + \frac{3}{10} \frac{4}{17} + \cdots$ 04
 - (ii) Test the convergence of the series: $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ 03
- (i) Find extreme values of $f(x, y) = x^3 + 3xy^2 3x^2 3y^2 + 7$ **Q.4** 04
 - (ii) Find all first and first and second order partial derivatives for $f(x, y) = x^2 \sin y + y^2 \cos x$. Hence, verify mixed derivative Theorem. 03
 - **(b)** (i) If $u = \tan^{-1}\left(\frac{x^3+y^3}{x-y}\right)$; show that $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2} = 2sinucos3u$. 04
 - (ii) If u = f(x y, y z, z x) then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. 03

03

- Q.5 (a) Sketch the region of integration and evaluate by reversing the order of Integration for integral $\int_0^{4a} \int_{\frac{x^2}{4a}}^{2\sqrt{ax}} dy dx$
 - **(b)** (i) Evaluate the integral $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ by changing into polar coordinates.
 - coordinates.
 (ii) Evaluate $\int_0^1 \int_0^{1-x} \int_0^{x+y} e^z dx dy dz$.
- Q.6 (a) (i) Find directional derivative of $\emptyset = xy^2 + yz^2$ at point (2, -1, 1) in the direction of vector $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$. (ii) If $\bar{r} = t^3\hat{\imath} + (2t^3 - \frac{1}{5t^2})\hat{\jmath}$, then show that $\bar{r} \times \frac{d\bar{r}}{dt} = \hat{k}$.
 - (b) Evaluate $\int_C \overline{F} \cdot d\overline{r}$, where, $\overline{F} = (x^2 + y^2)\hat{\imath} 2xy\hat{\jmath}$. Where, C is the rectangle in XY-plane bounded by y = 0, x = a, y = b, x = 0.
- Q.7 (a) Verify Green's theorem for $\oint_C [(x^2 2xy)dx + (x^2y + 3)dy]$. Where, C is the boundary of the region bounded by $y = x^2$ and the line y = x.
 - (b) (i) Show that \$\bar{F} = (y^2 z^2 + 3xy 2x)\hat{\hat{i}} + (3xz + 2xy)\hat{\hat{f}} + (3xy 2xz + 2z)\hat{k}\$ is both solenoidal and irrotational.
 (ii) Evaluate \$\oint_C [e^x dx + 2y dy dz]\$ by Stoke's theorem. where, C is the curve \$x^2 + y^2 = 4, z = 2\$.
