Enrolment No.____ Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY BE SEMESTER 1st / 2nd (OLD) EXAMINATION WINTER 2016

Date: 24/01/2017 Subject Code: 110008

Subject Name: MATHS-1

if

Time: 10:30 AM TO 1:30 PM **Total Marks: 70**

Instructions:

1. Attempt any five questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- $2x^2 \le f(x) \le \sqrt{5} x^2$ for $-1 \le x \le 1$ then find 03 $\mathbf{O.1}$ (a) (i) If
 - 04 (ii) Verify Lagrange's Mean Value Theorem for the function f(x) = x^2 -2x+4 on [1,5].
 - 04 **(b)** (i) Using L'hospital Rule, Evaluate (1) Jim
 - 03 (ii) Find Taylor's series generated by
- (i) Trace the curve $r = a(1+\cos\theta)$; a > 004 $\mathbf{Q.2}$ (a) 03 (ii) Use the Fundamental Theorem of the integral calculus to find (** Büssümü ellü
 - 04 **(b)** (i) Discuss the convergence of the integral dx.
 - (ii) Find the absolute maximum and minimum value of f(x) = x03 on the interval [-2,3].
- Discuss the convergence of the following series: $\mathbf{Q.3}$ (a) **06**

 - **(b)** (i) Test the convergence of series and if it is 04 convergent then find its sum.

04

(ii) Does the sequence whose nth term is $\alpha_{m} = \left(\frac{m}{m} \right)^{m}$ converge? If so, then find

Q.4 (a) 03 (i) Discuss the continuity of the function ; $(x, y) \neq (0,0)$. $= \overline{0}$; (x, y) = (0,0)(ii) If we show the second of show that x 04 (i) Find the equation of tangent plane and the normal line to surface 04 **(b)** $x^2 + 2y^2 + 3z^2 = 12$ at (1,2-1)(ii) Find if w = xy + z, $x = \cos t$, $y = \sin t$, z = t03 (i) If $x = r\cos \theta$, $y = r\sin \theta$ then evaluate Q.5 (a) 03 (ii) Evaluate , where R is the region bounded by the 04 Parabolas $\sqrt[3]{2} = 4x$ and $x^2 = 4y$ (i) Evaluate : by changing order of integration. **(b)** 04 (ii) Evaluate: 03 (i) Find the area enclosed by lemniscate Q.6(a)04 (ii) Evaluate (x - 2y + x) dx dy dz over the region R, 03 where R: $0 \le x \le 1$, $0 \le y \le x^2$, $0 \le z \le x + y$ (i) Find the volume bounded by cylinder x2 + y2 - 4 annal three pollumes **(b)** 04 $w\cdot v\cdot x:=3$ canad x:=0 . (ii) Evaluate dixdy by changing to polar co-ordinates. 03 **Q.7** (a) (i) Find the divergence and curl of (x,y) (x,y)04

(ii) Evaluate find along the parabola =x between the points

at (2,-1,1)

(0,0) and (1,1) where $= x^2 + xy$

03

- (b) (i) Find the directional derivatives of + y at the point (2,-1,1) 04 in the direction of the vector + y ...
 - (ii) Evaluate (x^2+2y) dx + $(4x + y^2)$ by Green's theorem where C is 03 the boundary of the region bounded by y = 0, y = 2x and x + y = 3.