GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1st / 2nd • EXAMINATION - SUMMER • 2014

Date: 16-06-2014 Subject Code: 110009

Subject Name: Mathematics - II

Time: 02:30 pm - 05:30 pm **Total Marks: 70**

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Find the inverse of $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ **Q.1** 07
 - (b) What conditions must $b_1, b_2,$ and b_3 satisfy in order for the system of equations 07 $x + y + z = b_1$, $x + z = b_2$, $2x + y + 3z = b_3$ to be consistent?
- **Q.2** Find the eigen values and one of the eigen vector of the matrix **07**

$$A = \begin{bmatrix} 8 & 5 & 0 \\ 0 & 3 & 0 \\ -9 & -1 & -1 \end{bmatrix}$$
 (b) Find the basis for the null space of the matrix

$$A = \begin{bmatrix} 1 & 4 & 5 & 6 & 9 \\ 3 & -2 & 1 & 4 & -1 \\ -1 & 0 & -1 & -2 & -1 \\ 2 & 3 & 5 & 7 & 8 \end{bmatrix}$$

07 Use the inner product $\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$. To compute $\langle p, q \rangle$ 0.3 for the vectors p = p(x) and q = q(x) in P₃ where

1.
$$p = 1 - x + x^2 + 5x^3$$
 $q = x$
2. $p = x - 5x^3$ $q = 2 + 8x^2$

- **(b)** Find the orthonormal basis for the subspace spanned by **07** $\{(1,1,1),(1,-2,1),(1,2,3)\}.$
- Consider the basis $S=\{v_1,v_2,v_3\}$ for R^3 , where $v_1=(1,1,1)$, $v_2=(1,1,0)$ 07 **Q.4** $v_3 = (1,0,0)$. Let T: $\mathbb{R}^3 \to \mathbb{R}^2$ be the linear transformation such that $T(v_1) = (1,0)$ $T(v_2) = (2,-1)$ and $T(v_3) = (4,3)$. Find a formula for T(x, y, z) and compute T(2,1,3)07
 - **(b)** Let T: $\mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y) = (y, -5x + 13y, -7x + 16y). Find the matrix for the linear transformation T with respect bases B={ $b_1 = (3,1)$ $b_2 = (5,2)$ } for R² and $B' = \{ v_1 = (1,0,-1), v_2 = (-1,2,2), v_3 = (0,1,2) \}.$
- (a) Solve the following system of the equations **07 Q.5** x + 2y + z = 5, 3x - y + z = 6, x + y + 4z = 7.
 - (b) Define: symmetric and skew-symmetric matrix. Show that every square matrix **07** can be expressed as sum of symmetric and skew-symmetric matrix.
- (a) Consider the vectors $\mathbf{u} = (2,-1,1)$ and $\mathbf{v} = (1,1,2)$ **Q.6** 04 Find 1. u + v = 2. u.v = 3. ||u - v|| and determine the angle between u and v.
 - 04 (b) Find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$

07

http://www.gujaratstudy.com

	(c)	Let $A = \begin{bmatrix} A & 1 \end{bmatrix}$. Compute A , A and A $-2A + 1$.	06
Q.7	(a)	Show that the vectors $v_1 = (1, 2, 3)$, $v_2 = (4, 5, 6)$ and $v_3 = (2, 1, 1)$ in \mathbb{R}^3 linearly	04
		independent.	
	(b)	Define: Basis for Vector Space.	04
		Show that the set of vectors $S = \{ (1,2,1), (2,9,0), (3,3,4) \}$ is a basis for \mathbb{R}^3 .	
	(c)	Show that the set of vectors $S=\{(1,2,1),(2,9,0),(3,3,4)\}$ is a basis for R^3 . Determine which of the following are subspace of R^3	06
		1. $W = \{ (x,y,0) / x, y \in R \}$	
		2. $U = \{(x, 1, 1) / x \in R\}.$	
