GUJARAT TECHNOLOGICAL UNIVERSITY

B. E. - SEMESTER - I • EXAMINATION - WINTER • 2014

Subject code: 110009 Date: 05-01-2015

Subject Name: Mathematics - II

Time: 10:30 am - 01:30 pm Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Find the Rank of the matrix
$$\begin{bmatrix} 0 & -1 & 2 & 3 \\ 2 & 3 & 4 & 5 \\ 1 & 3 & -1 & 2 \\ 3 & 2 & 4 & 1 \end{bmatrix}$$
 05

- (b) Solve the following system of equations using Gauss Elimination method 3x + 3y + 2z = 1, x + 2y = 410y + 3z = -2, 2x - 3y - z = 5
- (c) Find k, l and m so that $\begin{bmatrix} -1 & k & -i \\ 3-5i & 0 & m \\ l & 2+4i & 2 \end{bmatrix}$ is Hermitian.
- Q.2 (a) Show that the set of all pairs of real numbers of the form (1, x) with the operations defined as (1, x) + (1, y) = (1, x + y) and k(1, x) = (1, kx) is a vector space.
 - (b) Express the vector (6, 11, 6) as a linear combination of **05** (2, 1, 4), (1, -1, 3), (3, 2, 5)
 - (c) Find the condition on a, b, c so that the vector v = (a, b, c) is in the span of $\{v_1, v_2, v_3\}$ where $v_1 = (2, 1, 0)$, $v_2 = (1, -1, 2)$, $v_3 = (0, 3, -4)$
- Q.3 (a) Check whether the set $\{2 + x + x^2, x + 2x^2, 4 + x\}$ of polynomials is linearly dependent or independent in P_2
 - (b) Find a basis for the subspace of P_2 spanned by the vectors **05** 1+x, x^2 , $-2+2x^2$, -3x
 - (c) Find a basis for the row and column subspaces of $\begin{bmatrix} 1 & 4 & 5 & 4 \\ 2 & 9 & 8 & 2 \\ 2 & 9 & 9 & 7 \\ -1 & -4 & -5 & -4 \end{bmatrix}$
- Q.4 (a) Show that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (2x y + z, y 4z) is a 05 linear transformation.
 - (b) Consider the basis $S = \{v_1, v_2\}$ for R^2 where $v_1 = (-2, 1)$ and $v_2 = (1, 3)$. Let $T : R^2 \to R^3$ be the linear transformation such that $T(v_1) = (-1, 2, 0)$ and $T(v_2) = (0, -3, 5)$ then find the formula of T(x, y)
 - (c) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation defined by T(x, y) = (2x y, -8x + 4y) then find a basis for kernel of T and range of T

- Q.5 (a) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by T(x, y, z) = (x + 2y + z, 2x y, 2y + z) then find the matrix of T with respect to the basis $\{(1, 0, 1), (0, 1, 1), (0, 0, 1)\}$
 - (b) Let $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ then check whether **05** $< u, v > = u_1v_1 u_2v_2 + u_3v_3$ defines an inner product on R^3
 - (c) For $p = a_0 + a_1 x + a_2 x^2$ and $q = b_0 + b_1 x + b_2 x^2$ let the inner product on P_2 **04** be defined as $\langle p, q \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$. Let $p = 3 x + x^2$ and $q = 2 + 5x^2$ then find ||p||, ||q|| and d(p,q)
- Q.6 (a) For $A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ let the inner product on M_{22} be defined as A, $B > = a_1 a_2 + b_1 b_2 + c_1 c_2 + d_1 d_2$. Let $A = \begin{bmatrix} 2 & 6 \\ 1 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}$ then verify Cauchy-Schwarz inequality and find the angle between A and B
 - Show that the set of vectors $v_1 = \left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$, $v_2 = \left(-\frac{1}{2}, \frac{1}{2}, 0\right)$ and $v_3 = \left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ is orthogonal in R^3 and then convert it into an orthonormal set
 - (c) Find the algebraic and geometric multiplicity of each of the eigen value of $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$
- Q.7 (a) Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A^{-1} 05
 - (b) Find a non singular matrix which diagonalizes $\begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ 05
 - (c) Find the maximum and minimum values of the quadratic form $x^2 + y^2 + 4xy$ subject to the constraint $x^2 + y^2 = 1$ and also determine the values of x and y at which the maximum and minimum occur
