GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 EXAMINATION - WINTER 2017

Subject Code: 110009 Date: 30/12/2017

Subject Name: Maths-II (entry year 2008-10 having backlog)

Time: 10:30 AM TO 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.
- **07** 0.1 Use Gauss elimination to solve the system of linear equations (a) $x_1 - 2x_2 - 3x_3 = 0$, $2x_2 + x_3 = -8$, $-x_1 + x_2 + 2x_3 = 3$
 - (b) Find the inverse of a matrix by using Gauss Jordan method **07**
- **Q.2** Show that the set of all pairs of real numbers of the form (1, y) is a vector space 07 under the operations
 - $(1, y_1) + (1, y_2) = (1, y_1 + y_2)$ and k(1, y) = (1, ky).
 - **(b)** (1) Check whether the following are subspaces or not: 04
 - All vectors of the form (a, b, 0), $V = R^3$ (i)
 - All 2 \times 2 matrices A such that det(A) = 0(ii)
 - 03 (2) Show that the vector v = (1, 7, 3) is a linear combination of the vectors $v_1 = (1, -1, 2), v_2 = (0, 4, 2), v_3 = (-1, 5, 3).$
- Check for linear dependence independence of the following: 0.3

(1)
$$(-3, 0, 4)$$
, $(5, -1, 2)$, $(1, 1, 3)$
(2) $2x^2 - x + 7$, $x^2 + 4x + 2$, $x^2 - 2x + 4$
(3) $1, e^x, e^{2x}$

(b) Determine the dimension and basis for the solution space of the following: 07

$$x_1 - 3x_2 + x_3 = 0,$$

$$2x_1 - 6x_2 + 2x_3 = 0$$

$$3x_1 - 9x_2 + 3x_3 = 0$$

0.4 (a) Verify rank nullity theorem for the matrix

$$\begin{bmatrix} 1 & -1 & -1 \\ 4 & -3 & -1 \\ 3 & -1 & 3 \end{bmatrix}$$

 $\begin{bmatrix} 1 & -1 & -1 \\ 4 & -3 & -1 \\ 3 & -1 & 3 \end{bmatrix}$ **(b)** Let $\bar{u} = (u_1, u_2)$ and $\bar{v} = (v_1, v_2)$ be vectors in R^2 . Verify that the inner 07 product

$$\langle \bar{u}, \bar{v} \rangle = 3u_1v_1 + 5u_2v_2$$

satisfies the four inner product axioms.

Let R^3 have the Euclidean inner product. Use Gram-Schmidt process to 0.5 07 transform the basis $\{u_1, u_2, u_3\}$ into an orthonormal basis, where

$$u_1 = (1, 1, 1), u_2 = (-1, 1, 0), u_3 = (1, 2, 1)$$

(b) Find the least squares solution of the system $AX = \boldsymbol{b}$ given by 07 2x - 2y = 2, x + y = -1, 3x + y = 1.

07

- (a) Check for linear transformation 03
 - 02
 - (1) $T: R^2 \to R^2$ defined by T(x, y) = (2x y, x y)(2) $T: R^2 \to R^3$ defined by T(x, y) = (x, y + 2, x + y)02
 - (3) $T: M_{nn} \to M_{nn}$ defined by $T(A) = A^T$
 - Let $T: R^2 \to R^3$ defined by $T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ -5x_1 + 13x_2 \\ -7x_1 + 16x_2 \end{bmatrix}$. Find the matrix for **07 (b)**

the transformation T with respect to the basis $B = \{u_1, u_2\}$ for R^2 and B' =

$$\{v_1, v_2, v_3\}$$
 for R^3 where $u_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$, $u_2 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}$, $v_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$,

$$v_2 = \begin{bmatrix} -1\\2\\2 \end{bmatrix}, v_3 = \begin{bmatrix} 0\\1\\2 \end{bmatrix}.$$

Q.7 (a) Find the eigenvalues and eigenvectors of the matrix

(b) Verify Cayley-Hamilton theorem for the matrix A where

 $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 & 1 \\ 1 & 2 \end{bmatrix}$

07

07