Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1st/2nd • EXAMINATION - SUMMER • 2014

Date: 16-06-2014 Subject Code: 110015

Subject Name: Vector Calculus and Linear Algebra

Time: 02:30 pm - 05:30 pm **Total Marks: 70**

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- If a force $\bar{F} = 2x^2 yi + 3xyj$ displace a particle in the xy-plane from (0,0) **Q.1** 14 to (1,4) along a curve $y = 4x^2$. Find work done.
 - 2 For what values of constant k does the system x - y = 3.2 - 2y = kHave no solution? Exactly one solution? Infinitely many solution?
 - 3 Solve following equations by Cramer's rule.

$$x_1 + x_2 + x_3 = 9$$

 $2x_1 + 5x_2 + 7x_3 = 52$
 $2x_1 + x_2 - x_3 = 0$

4 $T: \mathbb{R}^2 \to \mathbb{R}^2, T(x, y) = (2x + y, x - 2y).$

Is T one - one? If so find T^{-1}

- Find the co-ordinates of a polynomial $p = 5 + 11x + 2x^2$ relative to the basis S= $\{1 x, 1 + x, 1 x^2\}$ of $P_2(R)$. 5
- Determine the algebraic multiplicity of $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{bmatrix}$. 6
- 7 Let $W = \text{span}\{ (0,1,0), (-4/5,0,3/5) \}$ Express W=(1,1,1) in the form $W=w_1+w_2$ where $w_1 \in W$, $w_2 \in W$
- (1) Verify whether the following matrices are Hermitian or skew Hermitian or Q.2 (a) 02 neither. Give reason.

(i)
$$\begin{bmatrix} a & c+id \\ c-id & b \end{bmatrix}$$
 (ii) $\begin{bmatrix} 2i & 1+i & -3+2i \\ -1+i & 0 & 2-i \\ 3+2i & -2-i & -3i \end{bmatrix}$.

(2) Solve the following set of equations by Gauss Jordan meth

$$x + y + 2z = 8$$

$$-x - 2y + 3z = 1$$

$$3x - 7y + 4z = 10$$
(b) (1)
$$\begin{bmatrix} 1 & 3 & 3 \end{bmatrix}$$

Find the inverse of matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \end{bmatrix}$ using row operations.

(2) Reduce the following matrix to reduced row echelon form.

$$\left(\begin{array}{cccccc}
1 & 2 & 3 & -1 \\
-2 & -1 & -3 & -1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right)$$

- (1) Show that $\langle \overline{u}, \overline{v} \rangle = 9u_1v_1 + 4u_2v_2$ is an inner product on \mathbb{R}^2 generated 02 Q.3 (a)
 - (2) Using Gramm-schmidt process construct an orthonormal basis for R³ Whose basis is the set $\{(2,1,3),(1,2,3),(1,1,1)\}$
 - (1) Find an angle between t and sint for V is an inner product space of all **(b)** continuous functions on $[0,\pi]$ with the inner product defined by

05

05

04

03

 $\langle \bar{f}, \bar{g} \rangle = \int_0^{\pi} \bar{f}(t) \, \bar{g}(t) \, dt$. (2) Show that $\langle \bar{x}, \bar{y} \rangle = x_1y_1 - x_1y_2 - x_2y_1 + 2x_2y_2$ on \mathbb{R}^2 is an inner product. (1) (i) Check whether $V = R^2$ is a vector space defined by the operations Q.4 (a) 04 $(u_1, u_2) \oplus (v_1, v_2) = (u_1 + 2v_1, u_2 + 2v_2)$ $\propto \bigcirc (u_1, u_2) = (\alpha u_1 - 1, \alpha u_2 + 2)$ (ii)S = { $(x_1, x_2, x_3)/x_1 + 2x_2 = 1$ } Check whether S is a subspace of \mathbb{R}^3 . (2) Express $p(x) = 6 + 11x + 6x^2$ as a linear combination of the following. 03 $p_1 = 2 + x + 4x^2$, $p_2 = 1 - x + 3x^2$, $p_3 = 3 + 2x + 5x^2$. (1) Verify dimension theorem of the matrix **(b)** 04 $A = \begin{pmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{pmatrix}$ Show that the following set of vectors is a basis for M_{22} . 03 03 $S = \left\{ \begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ Find eigen values and eigen vectors of the matrix Q.5 (a) 04 $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$ **(b)** Verify Caley-Hamilton theorem for the matrix 05 $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and hence find A⁻¹ Find the canonical form of the quadratic form 05 (c) $Q = 2x_1^2 + 3x_2^2 + 2x_3^2 + 2x_1x_3$ using orthogonal transformation. Find index ,rank ,signature of the quadratic form Find a matrix for the linear transformation L: $p_3 \rightarrow M_{22}$ defined by $L(ax^3 + bx^2 + cx + d) = \begin{bmatrix} -3a - 2c & -b + 4d \\ 4b - c + 3d & -6a - b + 2d \end{bmatrix}$ respect to the standard basis $B(x^3, x^2, x, 1)$ and 04 **Q.6** (a) with $C = \{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \}$ Find a formula for $T(x_1, x_2)$ and use it to find T(5, -3) for the basis 05 **(b)** $S=\{v_1, v_2\}$ for R^2 where $v_1=(1,1), v_2=(1,0)$. Let T: $R^2 \to R^2$ be a linear transformation such that $T(v_1) = (1, , -2), T(v_2) = (-4, 1).$ If T: $\mathbb{R}^3 \to \mathbb{R}^3$ is a linear transformation given by 05 (c) T(x,y,z) = (x+y-z,x-2y+z,-2x-2y+2z). Find the basis of ker(T) and R(T). (1) Find the derivative of $f(x,y)=xe^y + \cos(xy)$ at the point (2,0) 04 Q.7 (a) in the direction of A=3i-4j. (2) Find constants a,b,c so that V = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z) is irrotational. 05 **(b)** State Green's theorem and also evaluate the integral $\oint (6y + x)dx + (y + 2x)dy$ where C: the circle $(x-2)^2 + (y-3)^2 = 4.$ (c) Find the flux of $F = yzj + z^2k$ outward through the surface S cut from the cylinder $y^2 + z^2 = 1$, $z \ge 0$ by the planes x=0 and x=1. ********