GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-I &II (NEW) EXAMINATION - SUMMER-2019

Subject Code: 2110015			Date: 01/06/2019	
Subj	ject :	Name: Vector Calculus & Linear Algebra		
Time: 10:30 AM TO 01:30 PM Total Ma			Marks: 70	
Instru	1. 2.		emaining six qu	estions.
Q.1		Objective Question (MCQ)		
	(a)			07
	1.	The matrix $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is in the form		
		(a) Row (b) Reduced row (c) Bot echelon.	th (a) and (b).	(d) None.
	2.	For $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ the $ A^k =$		
	3.	If u and v are vectors in a real inner product space, and	(d) u =2, v =3,	2 ^{k-1}
	4		2 (d)	1.5
	4.	Which of the following doesn't lie in the space spanned (a) 1 (b) 0 (c) Sin :	x (d)	Cos 2x
	5.	Dimension of the subspace { $p(x) \in P_2 : p(0) = 0$ } of F (a) 3 (b) 2 (c)	$P_2 = \{a+bx+cx^2:$ 1 (d)	$a, b, c \in R$ is 0
	6.	Which of the following subsets of R^2 is linearly depend (a) $\{(1,2), (2,1)\}$ (b) $\{(1,2), (2,1), (1,1)\}$ (c)		None
	7.	Let T: $R^2 o R^2$ defined by $T(x,y) = (x,0)$ then Ker (T) (a) Y-axis (b) X-axis (c)	= Origin (d) None
	(b)	(4) (4)	8	07
	1.	Which of the following is not an elementary matrix?		
		(a) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ (b) $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 \\ 1 & 9 \\ 0 & 1 \end{pmatrix}$ (d)	$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$
	2.	For $\bar{a} = (1, -1, 2)$, $\bar{b} = (1, 3, 1)$ are vectors of \mathbb{R}^3 wi	th Euclidean in	mer product then
	_,			product dion
		$\cos \theta = $, where θ is the angle between the two		
	2	* * * * * * * * * * * * * * * * * * * *	-3 (d)	6
	3.	Which of the following is not true? (a) $(AB)^T = B^TA^T$ (b) $(AB)^{-1} = B^{-1}A^{-1}$ (c)	(AT)T = A	(d) AT A
	4.	If A is $n \times n$ matrix having rank $n-1$ then A, A^2, A^3 ,		
	₩.	eigenvalue	, А,.	have common
		(a) $\frac{1}{1}$ (b) -1 (c)	0 (d)	2
	5.	If A is unitary matrix then $A^{-1} = \underline{\hspace{1cm}}$	0 (4)	2
	•	(a) A (b) A^2 (c)	A^{T}	d) I
	6.	The dimension of the solution space of $x - y = 0$ is	· ·	,
		(a) 0 (b) 1 (c)	2 (d)	3
	7.	If $f(x,y,z) = xyz$ then Curl (grad f) =	` '	
		(a) 0 (b) x (c) $xi+yj+zk$	(d)	xyz

- Q.2 (a) Which of the following are linear combination of u = (0, -2, 2) and v = (1, 3, -1)? 03 Justify! (i) (2,2,2), (ii) (0,4,5)
 - (b) Using Gram-Schmidt orthogonalization process find the corresponding orthonormal $\mathbf{04}$ set to $\{(1, 1, 1), (0, 1, 1), (0, 0, 1)\}.$
 - (c) Using Gauss- Jordan elimination find the inverse of $\begin{pmatrix} -1 & 3 & -4 \\ 2 & 4 & 1 \\ -4 & 2 & -8 \end{pmatrix}$.
- Q.3 (a) Find the rank of the matrix and basis of the null space of $\begin{pmatrix} 1 & -1 & 3 \\ 5 & -4 & -4 \\ 7 & -6 & 2 \end{pmatrix}$.
 - (b) Solve the system of linear equations using Gauss elimination method: x + y + 2z = 8, -x - 2y + 3z = 1, 3x - 7y + 4z = 10.
 - (c) Show that the set of all real numbers of the form (x, 1) with operations (x, 1) + (x', 1) = (x + x', 1) and k(x, 1) = (kx, 1) forms a vector space.
- Q.4 (a) Determine whether the following are linear transformation or not? (i) T: $P_2 \rightarrow P_2$, T(p(x)) = p(x+1),
 - (ii) T: $P_2 \rightarrow P_2$, $T(a + bx + cx^2) = (a + 1) + (b + 1)x + (c + 1)x^2$.
 - (b) Which of the following sets of vectors of \mathbb{R}^3 are linearly independent? Justify. (i) $\{(4, -1, 2), (-4, 10, 2)\}$ (ii) $\{(-3, 0, 4), (5, -1, 2), (1, 1, 3)\}$
 - (c) Find the eigenvalues and bases for the eigenspaces for A^{11} , $A = \begin{pmatrix} -1 & -2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0 \end{pmatrix}$
- Q.5 (a) Find basis of kernel and range of T: $R^2 \rightarrow R^2$, defined by T(x, y) = (2x y, -8x + 4y)
 - (b) Which of the following are basis of R³? Justify!
 (i) { (1, 0, 0), (2, 2, 0), (3, 3, 3) }, (ii) { (3, 1, -4), (2, 5, 6), (1, 4, 8)}
 - (c) Let T: P₂ → P₂, defined by T(p(x)) = p(3x 5)
 (i) Find the matrix of T with respect to the basis {1, x, x²}.
 - (ii) Use the indirect procedure using matrix to compute $T(1 + 2x + 3x^2)$.
 - (iii) Check the result in (b) by computing $T(1 + 2x + 3x^2)$ directly.
- Q.6 (a) Show that $\overline{F} = \frac{(yi xj)}{x^2 + y^2}$ is irrotational.
 - (b) Find the directional derivative of $f(x, y, z) = x^2z + y^3z^2 xyz$ at (1,1,1) in the direction **04** of the vector (-1,0,3).
 - Using Green's theorem evaluate \oint_C $(3x^2 8y^2) dx + (4y 6xy) dy$, where C is the boundary of the region bounded by $y^2 = x$ and $y = x^2$.
- **Q.7** (a) Find the work done by $\overline{F} = (y x^2) i + (z y^2) j + (x z^2) k$ over the curve $\mathbf{r}(t) = t i + t^2 j + t^3 k$; $0 \le t \le 1$, from (0,0,0) to (1,1,1).
 - (b) Use Cramer's rule to solve: x + 2z = 6, -x + 4y + 6z = 30, -x 2y + 3z = 8.
 - (c) Verify divergence theorem for $\overline{F} = x i + yj + zk$ over the sphere $x^2 + y^2 + z^2 = a^2$.