Seat No.: _____ Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-1/2 (NEW) EXAMINATION - WINTER 2017

Subject Code: 2110015 Date: 30/12/2017

Subject Name: Vector Calculus & Linear Algebra

Time: 10:30 AM TO 01:30 PM **Total Marks: 70**

Instructions:

- 1. Question No. 1 is compulsory. Attempt any four out of remaining Six questions.
- 1. Make suitable assumptions wherever necessary.
- 2. Figures to the right indicate full marks.
- Q.1 (a) Choose the appropriate answer for the following.
 - Determine whether the matrix $\begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ is in 1.
 - (a) row echelon form
 - (b) reduced row echelon form
 - (c) row echelon form and reduced row echelon form
 - (d) none of these
 - - If $A = \begin{bmatrix} 1 & -2 \\ 3 & -1 \end{bmatrix}$ then A^{-1} is

 (a) $\begin{bmatrix} -5 & 10 \\ -15 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} -1/5 & 2/5 \\ -3/5 & 1/5 \end{bmatrix}$ (c) $\begin{bmatrix} 5 & -10 \\ 15 & -5 \end{bmatrix}$ (d) $\begin{bmatrix} 1/5 & -2/5 \\ 3/5 & -1/5 \end{bmatrix}$
 - The eigen values of a matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is
 - (d) none of these (b) -1,-1(c) 1,-1
 - If $A = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 \\ 2 & 2 \end{bmatrix}$ then AB is

 (a) $\begin{bmatrix} 1 & 1 \\ 4 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} -1 & -1 \\ -4 & -4 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & -3 \\ 6 & 2 \end{bmatrix}$ (d) none of these 4.
 - If A is a matrix of an order 3×7 and rank of A is 3 then nullity of A is (b) 7 (c) 4 (d) none of these
 - If \overline{F} is irrotational then
 - (a) $\nabla \overline{F} \neq \overline{0}$ (b) $\nabla \times \overline{F} = \overline{0}$ (c) $\nabla \cdot \overline{F} = 0$ (d) none of these
 - 7. $\overline{i} \times \overline{j}$ is
 - (a) \overline{k} $(b) - \overline{k}$ (c) 0(d) none of these
 - **(b)** Choose the appropriate answer for the following.
 - If $\overline{u} = (3, -2)$ and $\overline{v} = (4, 5)$ then $\langle \overline{u}, \overline{v} \rangle$ is (b) 0(d) none of these
 - Determine which of the following is linearly dependent 2. (a) (1, 2), (3, 4) (b) (-1, -2), (-3, -4) (c) (2, 1), (4, 2)(d) none of these
 - The system of equations x + y = 4 and 2x + 2y = 6 has (a) unique solution (b) no solution (c) infinitely many solution (d) none of these
 - If $A = \begin{bmatrix} 2 & 5 \\ 0 & -2 \end{bmatrix}$ then eigen values of A^2 is (a) 4, 4 (b) 4, -4 (c) 2, 2(d) none of these
 - If $\overline{F} = x\overline{i} + y\overline{j} + z\overline{k}$ then $\nabla \cdot \overline{F}$ at (1,1,1) is (a) 0 (b) -1 **6.** If $\overline{u} = 6\overline{i} - 3\overline{j} + 2\overline{k}$ then $\|\overline{u}\|$ is (d) none of these
 - (a) $\sqrt{49}$ (b) $-\sqrt{49}$ (c) 49 (d) none of these
 - If $\overline{a} \cdot \overline{b} = 0$ then angle between \overline{a} and \overline{b} is
 - (a) 0 (b) 2π (d) none of these (c) π

07

07

- Q.2 (a) Find A^{-1} for $A = \begin{bmatrix} 0 & 1 & -1 \\ 3 & 1 & 1 \\ 1 & 2 & -1 \end{bmatrix}$, if exist.
 - (b) Determine whether the vector $\overline{v} = (-5, 11, -7)$ is a linear combination of the vectors $\overline{v_1} = (1, -2, 2)$, $\overline{v_2} = (0, 5, 5)$ and $\overline{v_3} = (2, 0, 8)$.
 - (c) When subjected to heat aluminium reacts with copper oxide to produce copper metal and aluminium oxide according to the equation
 Al₃ + CuO → Al₂O₃ + Cu
 Using Gauss elimination method, balance the chemical equation.
- Q.3
 (a) Find the rank of a matrix $A = \begin{bmatrix} 1 & 4 & 5 & 2 \\ 2 & 1 & 3 & 0 \\ -1 & 3 & 2 & 2 \end{bmatrix}$.
 - (b) Solve the system of equation by Gauss-Jordan elimination method, if exist. x + 4y 3z = 0; -x 3y + 5z = -3; 2x + 8y 5z = 1.
 - (c) Let $V = \{(a, b): a, b \in \mathbb{R}\}$. Let $\overline{u} = (u_1, u_2)$ and $\overline{v} = (v_1, v_2)$. Define $(u_1, u_2) + (v_1, v_2) = (u_1 + v_1 + 1, u_2 + v_2 + 1)$ and $c(u_1, u_2) = (cu_1 + c 1, cu_2 + c 1)$. Verify that V is a vector space.
- Q.4 (a) Is $T: \mathbb{R}^2 \to \mathbb{R}$, defined by $T(x,y) = x^2 + y^2$ linear?

 (b) Let $T: \mathbb{R}^2 \to \mathbb{R}$ be the mapping defined by $T(\overline{v}) = Av$ with $A = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$. Show that T is one-to-one.
 - (c) Fine the eigen values and eigen vectors of $A = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 2 & -1 \\ 0 & 1 & 0 \end{bmatrix}$.
- **Q.5** (a) If $\overline{r} = x\overline{i} + y\overline{j} + z\overline{k}$, show that $\nabla log r = \frac{1}{r}\hat{r}$. Where \hat{r} is unit vector.
 - (b) Find the directional derivative of $\emptyset = 4xz^3 3x^2y^2z$ at the point (2, -1, 2) in the direction $2\overline{i} + 3\overline{j} + 6\overline{k}$.
 - (c) Let *B* be the basis for \mathbb{R}^3 , given by $B = \{(1, 1, 1), (-1, 1, 0), (-1, 0, 1)\}$. Apply the **07** Gram-Schmidt process to *B* to find an orthonormal basis for \mathbb{R}^3 .
- **Q.6** (a) Find constant a, b, c, so that $\overline{F} = (x + 2y + az)\overline{i} + (bx 3y z)\overline{j} + (4x + cy + 03z)\overline{k}$ is irrotational.
 - (b) Determine whether $V = \mathbb{R}^2$ is an inner product space under the inner product < 04 $\overline{u}, \overline{v} > = u_1^2 v_1^2 + u_2^2 v_2^2$.
 - Verify the Green's theorem in the plane for $\oint_C (y^2 dx + x^2 dy)$, where C is the triangle bounded by x = 0; x + y = 1; and y = 0.
- Q.7 (a) Determine whether $\overline{v_1} = (2, 2, 2)$; $\overline{v_2} = (0, 0, 3)$ and $\overline{v_3} = (0, 1, 1)$ span the vector 03 space \mathbb{R}^3 .
 - (b) Consider the basis $S = {\overline{v_1}, \overline{v_2}}$ for \mathbb{R}^2 , where $\overline{v_1} = (-2, 1)$ and $\overline{v_2} = (1, 3)$ and let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation such that $T(\overline{v_1}) = (-1, 2, 0)$ and $T(\overline{v_2}) = (0, -3, 5)$. Find a formula for $T(x_1, x_2)$.