"GUJARAT TECHNOLOGICAL UNIVERSITY

BE SEMESTER- 1st/2nd (OLD SYLLABUS) EXAMINATION - SUMMER 2015

Subject code: 110014 Date: 02/06/2015

Subject Name: Calculus

Time: 10.30am-01.30pm Total Marks: 70

Instructions:

- 1. Attempt any five questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Each question carries equal marks.

Q.1 (a) Do as Directed:

(i) State Reduction formula for $\int_{0}^{\pi/2} \sin^{n} x \, dx, \, (n \in N).$

Hence, evaluate $\int_{0}^{\pi} x \sin^{5} x \, dx.$

(ii) Expand $f(x) = e^x \cos x$ in powers of x up to the terms containing x^4 . **04**

(b) Do as Directed:

- (i) Determine whether $\int_{0}^{\pi/2} \sec x \, dx$ converges or diverges.
- (ii) Evaluate the limits: 04 $r(\cos x 1)$ $2\sqrt{1 + x} = 2 x$

(i)
$$\lim_{x\to 0} \frac{x(\cos x - 1)}{\sin x - x};$$

(ii)
$$\lim_{x\to 0} \frac{2\sqrt{1+x}-2-x}{2\sin^2 x}$$
.

Q.2 (a) Do as Directed:

- (i) Find the critical points of $f(x) = 2x^3 14x^2 + 22x 5$. Also, find the points **03** of inflection.
- (ii) Using double integrations, find the area of the region common to the **04** parabolas $y^2 = 8x$ and $x^2 = 8y$.

(b) Do as Directed:

- (i) Test for convergence or divergence: $\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}.$
- (ii) Change into polar coordinates and hence evaluate : $\int_{0}^{a} \int_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}} y^2 dy dx.$

Q.3 (a) Do as Directed:

- (i) Find the local extreme values of the function $f(x, y) = x^3 + y^3 3xy$. 03
- (ii) Find the Maclurin's series expansion of $f(x, y) = \sin(2x + 3y)$ up to **04** third order derivative terms.

(b) Do as Directed:

- (i) State Euler's theorem for function of two variables and apply it to find $x^2 f_{xx} + 2xy f_{yx} + y^2 f_{yy}$ for $f(x, y) = \frac{x^5 y^5}{x^2 + 3xy}$.
- (ii) Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} z \, dz \, dy \, dx$.

Evaluate
$$\int_{0}^{2a} x^{5/2} \sqrt{2ax - x^2} dx.$$

04

(ii) If
$$x = r \sin \theta \cos \phi$$
; $y = r \sin \theta \sin \phi$; $z = r \cos \theta$ then find $\frac{\partial (x, y, z)}{\partial (r, \theta, \phi)}$.

- **(b)** Do as Directed:
 - Find the equations of tangent plane and normal line of the surface 03 $x^{2} + y^{2} - z^{2} = 4$ at the point (1, 2, 1).
 - Change into spherical polar coordinates and hence evaluate 04

$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dz \, dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}}.$$

- Do as Directed: Q.5 (a)
 - 03 Find the area of the loop of the curve $9ay^2 = x^2(3a - x)$. (i)
 - If z = f(x, y), where x = s + t; y = s t, show that 04

$$\left(\frac{\partial z}{\partial x}\right)^2 - \left(\frac{\partial z}{\partial y}\right)^2 = \frac{\partial z}{\partial s} \cdot \frac{\partial z}{\partial t}.$$

- Do as Directed: **(b)**
 - (i) 03 State Leibniz's rule and hence evaluate $\frac{d}{dx} \int_{2}^{\sqrt{x}} \cos(t+1) dt$.
 - 04 If $z = \sin^{-1}(x - y)$, where x = 3t; $y = 4t^3$, show that $\frac{dz}{dt} = 3(1 - t^2)^{-\frac{1}{2}}$.
- Do as Directed: **Q.6** (a)
 - 03 If $f(x, y) = \frac{x^2 y}{x^4 + y^2}$, does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist?
 - Find by double integrations, the volume of the cylinder $x^2 + y^2 = 1$ 04 between the planes z = 0 and y + z = 2.
 - Do as Directed: **(b)**
 - Find the asymptotes parallel to the coordinate axes of the curve 03 (i) $(x^2-4)(y^2-9)=36.$
 - Find the volume by triple integrals of the solid S that is bounded by the 04 (ii) plane 2x+3y+4z=12 and the three coordinate planes.
- Do as Directed: **Q.7** (a)
 - Discuss the symmetry of the curve $y^2(a^2-x^2)=x^2(a^2+x^2)$. 03 (i)
 - 04 (ii) Change the order of Integrations and hence evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{y^{2}} dx dy.$
 - **(b)** Do as Directed:
 - Using double integrations, find the area enclosed by the cardioid (i) 03 $r = a(1 + \cos \theta)$.
 - Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8 and x = 0 about the y-axis.
