
GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER 1^{st} / 2^{nd} EXAMINATION (OLD SYLLABUS) - SUMMER - 2017

Subject Code: 110010 Date:09/00 Subject Name: Mechanics of Solids			5/2017	
Ti	Time: 2:30 PM to 05:00 PM Instructions: Total Mark		70	
	2.	Attempt any five questions.Make suitable assumptions wherever necessary.Figures to the right indicate full marks.		
Q.1	(a) (b)	State and explain the Law of parallellogram of forces and the Lami's theorem. The following forces are acting at a point; find the magnitude and direction of the resultant force. 1. 750kN acting towards North. 2. 1000kN acting towards South-West 3. 800kN acting 30° South of East 4. 250kN acting towards East.	07 07	
Q.2	(a)(b)	 Classify the trusses from the analysis point of view. Explain various types of supports and corresponding reactions. Find the forces in any five members of the truss loaded as shown in the Fig.1 	07 07	
Q.3	(a) (b)	Determine Centroid of the plane area as shown in Fig.2. Calculate the moment of inertia of the plane area shown in Fig.2 with respect to the axis passing through the base 'AB'.	07 07	
Q.4	(a) (b)	Draw shear force and bending moment diagrams for the beam loaded as shown in Fig.3. Also locate the point of contraflexure. A uniform ladder, 1000N weight and 9m long, rests on rough floor and leans against a smooth vertical wall. Ladder makes 45° with the floor. The coefficient of friction between the ladder and the floor is 0.5. Determine how high along the ladder a man, having 500N weight will be able to ascend, before the ladder slips. Also define: Angle of repose and angle friction.	07 07	
Q.5	(a) (b)	Define: Stress, Strain, Modulus of Elasticity, Hooke's law, Poisson's ratio, ductility and hardness Find unknown force 'P' for equilibrium and also determine the stress and deformation in each part of the rod ABCD shown in Fig.4. Take $E=2X10^5$ N/mm ² .	07 07	
Q.6	(a) (b)	State assumptions for the theory of pure bending and give the expression of bending formula explaining the terms involved. Find out uniformly distributed load which can be safely applied to a cantilever beam having span 2m. The beam has rectangular cross section 200mmX300mm. The allowable bending stress in beam material is 15N/mm².	07 07	
Q.7	(a)	Draw neat sketches of shear stress distribution for the following sections: T-section, I-section and hollow rectangular section	07	

(b) A point in a strained material is subjected to a tensile stress of 150N/mm² and a compressive stress of 80N/mm² acting at right angles to each other. Determine the Normal, tangential and resultant stress on a plane inclined at 30° in anticlockwise direction with the direction of compressive stress.

Figures

