Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OLD) - EXAMINATION – SUMMER 2018

Subject Code: 130002 Date: 18/05/2018

Subject Name: Advanced Engineering Mathematics (New)

Time: 10:30 AM to 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) (i) Find the General Solution of the differential equation $(x^2 y^2)dy = 2xy dx$.
 - (ii) Find the General Solution of the differential equation $(1+y^2) dx = (e^{-\tan^{-1} y} x) dy.$
 - (b) (i) Define Ordinary Point of the differential equation y'' + P(x)y' + Q(x)y = 0. 03 Give an example of it.
 - (ii) Solve the differential equation y'' + y = 0 by the Power Series Method. **04**
- Q.2 (a) Solve the differential equation $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0$, $u(x, y) = 4e^{-x}$ by the

Method of Separation of Variables

(b) Find the Series Solution of the Differential Equation $2x^2y'' + (2x^2 - x)y' + y = 0.$

OR

- (b) (i) Find the Particular Solution of the Differential Equation $y'' + 25y = \cos 7x$. 03 by using the Method of Undetermined Co-efficients.
 - (ii) Using Method of Variation of Parameters solve the differential equation $y'' + y = \cot x$.
- Q.3 (a) Express the function $f(x) = x x^2$ as a Fourier Series in the interval $[-\pi, \pi]$.
 - (b) Find the Fourier Series to represent the function defined as follows $f(x) = \begin{cases} \pi x & \text{if } 0 \le x \le 1 \\ \pi (2-x) & \text{if } 1 \le x \le 2 \end{cases}$

OR

- Q.3 (a) Express the function $f(x) = \frac{(\pi x)^2}{4}$ as a Fourier Series in the interval $[0, 2\pi]$.
 - (b) Find Half Range Cosine Series for the function $f(x) = e^x$ in interval [0,1].
- **Q.4** (a) (i) Prove that $L\{\cosh at\} = \frac{s}{s^2 a^2}$.
 - (ii) State First Shifting Theorem and using it compute $L\{e^{3t}(2\sin 4t 3\cos 4t)\}$.

- (b) (i) Find the Inverse Laplace Transform of the function: $F(s) = \frac{1}{(s+\sqrt{2})(s-\sqrt{3})}.$
 - (ii) Find the Inverse Laplace Transform of the function: 04

$$F(s) = \frac{s^2}{(s^2 + 25)(s^2 + 49)}.$$

OR

- Q.4 (a) Using Laplace Transform solve the differential equation: $y'' + 2y' + y = e^{-t}$, y(0) = -1, y'(0) = 1.
 - **(b)** (i) Find the Laplace Transform of the function $f(t) = t \sin t$.
 - (ii) Find the Laplace Transform of the function $f(t) = \frac{\sin t}{t}$.
- Q.5 (a) Define following functions: 07
 - (i) Beta Function;
 - (ii) Gamma Function;
 - (iii) Error Function & Complementary Error Function.
 - (b) Find the Fourier Transform of the function f defined as follows: 07

$$f(x) = \begin{cases} xe^{-x} & x > 0; \\ 0 & x < 0. \end{cases}$$

OR

- Q.5 (a) (i) Form the Partial Differential Equation by eliminating arbitrary constants from $z = (x^2 + a)(y^2 + b)$.
 - (ii) Solve: $\frac{\partial^2 z}{\partial x \partial y} = x^2 + y^2$.
 - **(b)** (i) Solve: $p^2 + q^2 = 1$.
 - (ii) Solve: (y-z)p+(z-x)q = x-y.
