Seat No.: _____

Subject Code: 130002

Enrolment No.____

Date: 06-01-2015

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III • EXAMINATION - WINTER • 2014

Subject Name: Advanced Engineering Mathematics Time: 02.30 pm - 05.30 pm Instructions: Total Marks: 70			
11150		Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	 (1) Find the differential equation of the family of circles of radius r whose centre lies on the x-axis. (2) Solve ^{dy}/_{dx} + 2y tanx = sinx 	04
	(b)	Find the series solution of $y' - 2xy = 0$	07
Q.2	(a)	Solve by method of separation of variables $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x+y)u$	07
	(b)	Solve in series the differential equation $4x \frac{d^2y}{dx^2} + 2 \frac{dy}{dx} + y = 0$ OR	07
	(b)	(1) Solve the Initial Value Problem y"- $9y = 0$; $y(0) = 2$, $y'(0) = -1$ (2) Solve $(D^2 + 16)y = x^4 + e^{3x} + \cos 3x$	03 04
Q.3	(a)	(1) Find the Laplace transform of $f(t) = 0$; $0 \le t \le 3$ = 4; $t \ge 3$	03
	(b)	(2) Prove that $L(\sin h kt) = \frac{k}{s^2 - k^2}$ (1) Find $L^{-1}\left\{\frac{1}{s(s^2 + 4)}\right\}$ (2) Find $L^{-1}\left\{\frac{3s^2 + 2}{(s+1)(s+2)(s+3)}\right\}$	04 03 04
Q.3	(a)	OR If $L\{f(t)\}=F(s)$ then show that $L\{t^n f(t)\}=(-1)^n \frac{d^n}{ds^n}\{F(s)\}$; $n=1,2,3$	07
	(b)	and use this result find L(t^2 sin wt) Solve the differential equation by Laplace Transform $y'' + y = \sin 2t$; $y(0) = 2$, $y'(0) = 1$	07
Q.4	(a) (b)	Find the Fourier series of $f(x) = x + x $; $-\pi < x < \pi$ Find the Fourier expansion $f(x) = x^2 - 2$; $-2 \le x \le 2$	07 07
Q.4	(a) (b)	Obtain the cosine series for the function $f(x) = e^x$ in the range $(0,l)$ Find the Fourier series for the periodic function $f(x)$ $f(x) = -k; if -\pi < x < 0 f(x + 2\pi) = f(x)$ $= k; if 0 < x < \pi$ Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$	07 07
Q.5	(a)	(1) Define the following terms:(i) Beta function(ii) Heaviside's function	04
		(2) Eliminate the arbitrary function from the equation	03
	(b)	$z = xy + f(x^2 + y^2)$ Using Fourier integral representation, show that	07

$$\int_0^\infty \frac{\cos x\lambda + \lambda \sin x\lambda}{1 + \lambda^2} d\lambda = 0 \qquad ; \quad x < 0$$

$$= \pi/2 \qquad ; \quad x = 0$$

$$= \pi e^{-x} \qquad ; \quad x > 0$$

$$\mathbf{OR}$$

Q.5 (a) (1) Solve (y + z) p + (z + x) q = x + y (2) Solve $p^2 + q^2 = npq$ 03 (b) (1) Solve $\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x+3y)$ 04 (2) Solve $(D^2 + 10DD' + 25D'^2) z = e^{3x+2y}$.
