GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(New) EXAMINATION - SUMMER 2016

Subject Code:2130002 Date:07/06/2016

Subject Name: Advanced Engineering Mathematics

Time:10:30 AM to 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Answer the following one mark each questions: 14

- Integreating factor of the differential equation $\frac{dx}{dy} + \frac{3x}{y} = \frac{1}{y^2}$ is _____
- The general solution of the differential equation $\frac{dy}{dx} + \frac{y}{x}$ =tan2x
- 3 The orthogonal trajectory of the family of curve $x^2 + v^2 = c^2$ is
- 4 Particular integral of $(D^2 + 4)y = \cos 2x$ is _____
- 5 X=0 is a regular singular point of $2x^2y'' + 3xy'(x^2 4)y = 0 \text{ say true or false.}$
- 6 The solution of $(y-z)p + (z-x)q = x y is _____$
- State the type ,order and degree of differential equation $\left(\frac{dx}{dy}\right)^2 + 5y^{\frac{1}{3}} = x \text{ is } \underline{\hspace{1cm}}$
- 8 Solve $(D+D')z = \cos x$
- 9 Is the partial differential equation $2\frac{\partial^2 u}{\partial x^2} + 4\frac{\partial^2 u}{\partial x \partial y} + 3\frac{\partial^2 u}{\partial y^2} = 6 \text{ elliptic?}$
- 10 $L^{-1}\left(\frac{1}{(s+a)^2}\right) =$ ______
- 11 If f(t) is a periodic function with period t then $L[f(t)] = \underline{\hspace{1cm}}$
- 12 Laplace transform of f(t) is defined for +ve and -ve values of t. Say true or false.
- 13 State Duplication (Legendre) formula.
- 14 Find B $(\frac{9}{2}, \frac{7}{2})$
- **Q.2** (a) Solve: 9y y' + 4x = 0 03

(b) Solve:
$$\frac{dy}{dx} + y \cot x = 2 \cos x$$

(c) Find series solution of
$$y'' + xy = 0$$
 07

OR

(c) Determine the value of (a)
$$J_{\frac{1}{2}}(x)$$
 (b) $J_{\frac{3}{2}}(x)$ 07

Q.3 (a) Solve
$$(D^2 + 9)y = 2\sin 3x + \cos 3x$$
 03

(b) Solve
$$y'' + 4y' = 8x^2$$
 by the method of **04** undetermined coefficients.

(c) (i) Solve
$$x^2p + y^2q = z^2$$
 (ii) Solve by charpit's method px+qy = pq

Q.3 (a) Solve
$$y'' + 4y' + 4 = 0$$
, $y(0) = 1$, $y'(0) = 1$

(b) Find the solution of
$$y'' + a^2y' = \tan ax$$
, by the method of variation of parameters.

(c) Solve the equation
$$u_x = 2u_t + u$$
 given $u(x,0) = 4e^{-4x}$ by the method of separation of variable.

Q.4 (a) Find the fourier transform of the function
$$f(x) = e^{-ax^2}$$
 03

(b) Obtain fourier series to represent
$$f(x) = x^2$$
 in the interval $-\pi < x < \pi$. Deduce that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

(c) Find Half-Range cosine series for
$$F(x) = kx , 0 \le x \le \frac{l}{2}$$

$$= k(l-x) , \frac{l}{2} \le x \le l$$
Also prove that $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}$

Q.4 (a) Expres the function
$$F(x)=2$$
, $|x|<2$
= 0, $|x|>2$ as Fourier integral.

(b) Find the fourier series expansion of the function
$$F(x) = -\pi \qquad -\pi < x < 0$$
$$= x \qquad 0 < x < \pi$$

(c) Find fourier series to represent the function
$$F(x) = 2x-x^2$$
 in $0 < x < 3$

Q.5 (a)
$$Find L^{-1}\left\{\frac{1}{(s+\sqrt{2})(s-\sqrt{3})}\right\}$$
 03

(b) Find the laplace transform of

(i)
$$\frac{cosat-cosbt}{t}$$

(ii) tsinat

(c) State convolution theorem and use to it evaluate
$$L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$$

OR

Q.5 (a) $L\{t^2 \cos h3t\}$ 03

(b) Find $L^{-1}\left\{\frac{1}{s^4-81}\right\}$ **04**

(c) Solve the equation $y'' - 3y' + 2y = 4t + e^{3t}$, when y(0)=1, y'(0) = -1
