Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2130002 Date: 25/05/2017

Subject Name: Advanced Engineering Mathematics

Time: 10:30 AM to 01:30 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1 Short Questions

14

- What are the order and the degree of the differential equation $y''+3y^2 = 3\cos x$.
- What is the integrating factor of the linear differential equation: $y'-(1/x)y = x^2$
- 3 Is the differential equation $ye^x dx + (2y + e^x) dy = 0$ is exact? Justify.
- 4 Solve: y''+11 y'+10 y = 0.
- 5 Find particular integral of: $y'' + y' = e^{2x}$
- 6 If $y = (c_1 + c_2 x)e^x$ is a complementary function of a second order differential equation, find the Wronskian $W(y_1, y_2)$.
- 7 Find the value of $\Gamma\left(\frac{7}{2}\right)$
- 8 What is the value of the Fourier coefficients a_0 and b_n for $f(x) = x^2, -1 < x < 1$.
- $9 \quad \text{Find } L\left\{e^{3t+3}\right\}$
- 10 Find $L^{-1} \left(\frac{4}{s^2} \frac{1}{(s^2 + 9)} \right)$
- Find the singular point of the differential equation $(1-x^2) y'' 2xy' + n(n+1) y = 0$
- Obtain the general integral of $\frac{\partial^3 z}{\partial x^3} = 0$
- 13 Obtain the general integral of p + q = z
- 14 State the relationship between beta and gamma function.

Q.2 (a) Solve:
$$(x^2 + y^2 + 3)dx - 2xydy = 0$$

(b) Solve:
$$\frac{dy}{dx} + (\tan x) y = \sin 2x, y(0) = 0$$

(c)
$$(D^4 - 16)y = e^{2x} + x^4$$
, where $D = d/dx$

OR

(c) Use the method of variation of parameters to find the 07

general solution of $y''-4y'+4y = \frac{e^{2x}}{x}$

- Q.3 (a) Find half range sine series of $f(x) = x^3, 0 \le x \le \pi$
 - (b) Find the Fourier integral representation of the function $f(x) = \begin{cases} 2, & |x| < 2 \\ 0, & |x| > 2 \end{cases}$
 - (c) Find the Fourier series expansion for the 2π periodic function $f(x) = x x^2$ in the interval $-\pi \le x \le \pi$ and show

that
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$

OR

- Q.3 (a) Discuss about ordinary point, singular point, regular singular point and irregular singular point for the differential equation: $x^3(x-1)y''+3(x-1)y'+7xy=0$
 - (b) Use the method of undetermined coefficients to solve the differential equation $y''+9y=2x^2$
 - (c) Find the series solution of $(x^2 + 1)y'' + xy' xy = 0$ about $x_0 = 0$.
- Q.4 (a) Solve: $(D^2 1)y = xe^x$, where D = d/dx
 - (b) Solve: $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = \sin(\ln x)$
 - (c) Use Laplace Transform to solve the following initial value problem:

$$y''-3y'+2y = 12e^{-2t}, y(0) = 2, y'(0) = 6$$

OR

- **Q.4** (a) Obtain $L\left\{e^{2t}\sin^2 t\right\}$ 03
 - (b) Find $L^{-1} \left[\frac{s+7}{s^2+8s+25} \right]$ 04
 - (c) Using Convolution theorem, obtain $L^{-1}\left[\frac{1}{(s^2+4)^2}\right]$
- Q.5 (a) Find the Laplace Transform of $t e^{4t} \cos 2t$ 03
 - (b) Form the partial differential equation from the following: 04
 - 1) z = ax + by + ct 2) $z = f\left(\frac{x}{y}\right)$
 - (c) Using the method of separation of variables solve, $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$ where $u(x,0) = 6e^{-3x}$

OR

- Q.5 (a) Obtain the solution of the partial differential equation: $p^{2} q^{2} = x y, \text{ where } p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}$
 - (b) Solve: $y^2 p xyq = x(z 2y)$, where $p = \frac{\partial z}{\partial x}$, $q = \frac{\partial z}{\partial y}$
 - (c) Find the solution of the wave equation 07

http://www.gujaratstudy.com

 $u_{tt} = c^2 u_{xx}$, $0 \le x \le L$ satisfying the conditions:

$$u(0,t) = u(L,t) = 0, \ u_t(x,0) = 0, \ u(x,0) = \frac{\pi x}{L}, 0 \le x \le L$$
