14

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (New) EXAMINATION - WINTER 2015

Subject Code:2130002 Date:31/12/2015

Subject Name: Advanced Engineering Mathematics

Time: 2:30pm to 5:30pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Answer the following one mark each questions:

- 1 Find $\Gamma\left(\frac{13}{2}\right)$
- 2 State relationship between beta and gamma functions.
- Represent graphically the given saw-tooth function f(x) = 2x, $0 \le x < 2$ and f(x + 2) = f(x) for all x.
- 4 For a periodic function f with fundamental period p, state the formula to find Laplace transform of f.
- 5 Find $L(e^{-3t}f(t))$, if $L(f(t)) = \frac{s}{(s-3)^2}$.
- 6 Find $L[(2t-1)^2]$.
- 7 Find the extension of the function f(x) = x + 1, define over (0,1] to $[-1,1] \{0\}$ which is an odd function.
- Is the function $f(x) = \begin{cases} x, & 0 \le x \le 2 \\ x^2, & 2 < x \le 4 \end{cases}$; continuous on [0,4]? Give reason.
- 9 Is the differential equation $\frac{dy}{dx} = \frac{y}{x}$ exact? Give reason.
- Give the differential equation of the orthogonal trajectory to the equation $y = cx^2$.
- 11 If $y = c_1y_1 + c_2y_2 = e^x(c_1\cos x + c_2\sin x)$ is a complementary function of a second order differential equation, find the Wronskian $W(y_1, y_2)$.
- 12 Solve $(D^2 + D + 1)y = 0$; where $D = \frac{d}{dt}$.
- 13 Is $u(t,x) = 50e^{(t-x)/2}$, a solution to $\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} + u$?
- **14** Give an example of a first order partial differential equation of Clairaut's form.

Q.2 (a) Solve:
$$\frac{dy}{dx} = \frac{x^2 - x - y^2}{2xy}$$
.

atstuc	dy.com		
	(b)	Solve: $\frac{dy}{dx} + \frac{1}{x}y = x^3y^3.$	04
	(c)	Find the series solution of $(x-2)\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + 9y = 0$ about $x_0 = 0$.	07
	(c)	Explain regular-singular point of a second order differential equation and find the roots of the indicial equation to $x^2y'' + xy' - (2 - x)y = 0$.	07
Q.3	(a)	Find the complete solution of $\frac{d^3y}{dx^3} + 8y = \cosh(2x)$.	03
	(b)	Find solution of $\frac{d^2y}{dx^2} + 9y = \tan 3x$, using the method of variation of parameters.	04
	(c)	Using separable variable technique find the acceptable general solution to	07
		the one-dimensional heat equation $\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$ and find the solution satisfying the conditions $u(0,t) = u(\pi,t) = 0$ for $t > 0$ and $u(x,0) = \pi - x$, $0 < x < \pi$.	
		OR	
Q.3	(a)	Solve completely, the differential equation	03
		$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \cos(2x)\sin x.$	
	(b)	Solve completely the differential equation	04
		$x^2 \frac{d^2 y}{dx^2} - 6x \frac{dy}{dx} + 6y = x^{-3} \log x.$	
	(c)	(i) Form the partial differential equation for the equation $(x - a)(y - a)$	07
		b) $-z^2 = x^2 + y^2$. (ii) Find the general solution to the partial differential equation $xp + y^2$	
		yq = x - y.	
Q.4	(a)	Find the Fourier cosine integral of $f(x) = \frac{\pi}{2}e^{-x}, x \ge 0$.	03
	(b)	For the function $f(x) = \cos 2x$, find its Fourier sine series over $[0, \pi]$.	04
	(c)	For the function $f(x) = \begin{cases} x; & 0 \le x \le 2 \\ 4 - x; & 2 \le x \le 4 \end{cases}$, find its Fourier series.	07
		Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{16}$. OR	
Q.4	(a)	Find the Fourier cosine series of $f(x) = e^{-x}$, where $0 \le x \le \pi$.	03
	(b)	Show that $\int_0^\infty \frac{\lambda^3 \sin \lambda x}{\lambda^4 + 4} d\lambda = \frac{\pi}{2} e^{-x} \cos x, x > 0.$	04
	(c)	Is the function $f(x) = x + x $, $-\pi \le x \le \pi$ even or odd? Find its Fourier	07
Q.5	(a)	series over the interval mentioned. Find $I\left(\int_{0}^{t} dt dt dt = \sin t dt\right)$	03
		Find $L\left\{\int_0^t e^u(u+\sin u)du\right\}$.	04
	(b)	Find $L^{-1}\left\{\frac{1}{s(s^2-3s+3)}\right\}$.	
	(c)	Solve the initial value problem: $y'' - 2y' = e^t \sin t$, $y(0) = y'(0) = 0$,	07
		using Laplace transform. OR	
Q.5	(a)	Find $L\{t(\sin t - t\cos t)\}$.	03
	(b)	Find $L^{-1}\left\{\frac{e^{-2s}}{(s^2+2)(s^2-3)}\right\}$.	04
	(c)	State the convolution theorem and verify it for $f(t) = t$ and $g(t) = e^{2t}$.	07
