http://www.gujaratstudy.com
Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY
BE - SEMESTER-II1 (New) EXAMINATION - WINTER 2015

Subject Code:2130002

Subject Name: Advanced Engineering Mathematics

Time: 2:30pm to 5:30pm

Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
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Q2 (a)

Answer the following one mark each questions:
Find T (2)
2

State relationship between beta and gamma functions.

Represent graphically the given saw-tooth function f(x) =2x, 0<
x<2and f(x +2) = f(x) forall x.

For a periodic function f with fundamental period p, state the formula to
find Laplace transform of f.

Find L(e 3 (1)), if L(f(t)) = (5_53)2.
Find L[(2t — 1)2].

Find the extension of the function f(x) = x + 1, define over (0,1] to
[—1,1] — {0} which is an odd function.
X, 0<x<2

Is the function f(x) = {xz 9 < x <4 continuous on [0,4]? Give

reason.

. . . d .
Is the differential equation d—z = %exact? Give reason.

Give the differential equation of the orthogonal trajectory to the equation
y = cx?.

If y=cy, +cy,=e*(cicosx+c,sinx) is a complementary
function of a second order differential equation, find the Wronskian
Wy, y2).

Solve (D? + D + 1)y = 0; where D = 4

dt
ou

Is u(t, x) = 50et=%)/2 3 solution to Z—’: =—+u?

Give an example of a first order partial differential equation of Clairaut’s
form.

d x%—x—y?
Solve: 2 =222
dx 2xy
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(b) Solve + y = x3y3. 04

(©)  Find the series solution of (x — 2) Z x2 dy >+ 9y = 0 about x, = 0. 07

OR
(c) Explain regular-singular point of a second order differential equation and 07
find the roots of the indicial equation to x2y"” + xy’ — (2 — x)y = 0.

Q3 (8 Findthe complete solution of % + 8y = cosh(2x). 03

2
() Find solution of % + 9y = tan 3x, using the method of variation of 04

parameters.
(c) Using separable variable technique find the acceptable general solutionto 07

the one-dimensional heat equation 2—1: =2 2 p and find the solution

satisfying the conditions u(0,t) = u(m,t) = 0 for t > 0 and u(x,0) =
n—x, 0<x<m.

OR
Q.3 (a) Solve completely, the differential equation 03
d%y dy _ .
- 6E+ 9y = cos-(Zx) 51r-1x. -
(b) Solve completely the differential equation 04
2d%y _ . dy — .3
2~ 0x—_+ 6y =x""logx.

(c) (i) Form the partial differential equation for the equation (x —a)(y — 07
b) — z? = x? + y?,
(if) Find the general solution to the partial differential equation xp +

=X—Y.
Q4 ( I}:qund the F(})]urier cosine integral of f(x) = ge"‘, x > 0. 03
(b) For the function f(x) = cos 2x, find its Fourier sine series over [0, r]. 04
©  Eor the function f(x) = {x_ . 02<<xx<<241 find its Fourier series. 07
Hence show that — + + =+ ’I6
OR
Q.4 (a) Find the Fourier cosine series of f(x) = e ™, where 0 < x < . 03
(0)  show that foo/1 SInAY 41 = —e X cosx, x > 0. 04

(c) Isthe function f(x) =x+ |x| -m < x < meven or odd? Find its Fourier 07
series over the interval mentioned.

Q5 (@ FindL {fot e*(u + sin u)du}. 03
b . -1 1 04
(b) Find L {s(sz—3s+3)}'

(c) Solve the initial value problem: y"" — 2y’ = etsint, y(0) = y'(0) = 0, 07
using Laplace transform.

OR
Q.5 (a) Find L{t(sint —tcost)}. 03
(b)) Eing -1 e”? 04
Find L {(52+2)(52—3)}'

(c) State the convolution theorem and verify it for £(t) = t and g(t) = e?t. 07
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