
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III EXAMINATION - SUMMER 2016

	•		Date:09/06/2016	
Subject Name: Circuits and Networks Time: 10:30 AM to 01:00 PM Instructions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.			70	
Q.1	(a)	State the voltage and current relationships in resistor, inductor and capacitor. Also, state the initial and final conditions for resistor, inductor and capacitor for the different conditions.	07	
	(b)	State and explain Maxwell Loop Current (Mesh Analysis) method.	07	
Q.2	(a) (b)	State and explain Nortan's Theorem with suitable example. Describe Laplace transformation method for solving differential equations. State its advantage over the classical method. OR	07 07	
	(b)	Write down Kirchhoff's voltage law equations for the network in Fig.1.	07	
Q.3	(a)	State Maximum Power Transfer Theorem. Find the condition for the maximum power transfer for the DC circuit.	07	
	(b)	Find the current through the 5V source in Fig. 2 using Node voltage analysis OR	07	
Q.3	(a) (b)	State and explain Reciprocity Theorem and Millman Theorem. Find the current through 3k resistance for Fig. 3 using Super Position Theorem. (k stands for $k\Omega$ value)	07 07	
Q.4	(a)	In the network shown in Fig. 4, find i_1 , i_2 and di_2/dt at $t = 0^+$, assuming all initial conditions as zero.	07	
	(b)	Explain the particular integral and complementary function solution of a first order non-homogeneous equation.	07	
		OR		
Q.4	(a)	In the network shown in Fig. 5, the switch is moved from position 1 to 2 at t=0, steady state having previously been attained. Find the voltage Vc(t).	07	
	(b)	Find Laplace transform of e ^{-at} sinωt.	07	
Q.5	(a) (b)	Find the expression for z parameters in terms of y parameters. Define the terms: Node, Branch, Loop, Mesh, Graph, Path and Tree.	07 07	
Q.5	(a) (b)	OR Explain poles and zeros of network function. Provide features of them. Find the expression for z parameter in terms of ABCD parameters.	07 07	
