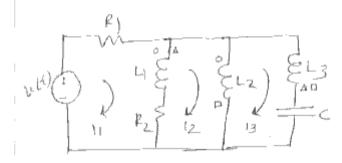
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OLD) - EXAMINATION - SUMMER 2017


Subject Code: 130901 Date: 02/06/2017

Subject Name: Circuits and Networks

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the "Dot Convention Rule" for the magnetically coupled Network using network shown in Fig-1.Also formulate KVL equations.

FIGURE_1

- (b) State and explain various Two port parameters and Network functions in brief. 08
- Q.2 (a) Explain the duality & Draw the dual of the Network for Figure _2 06

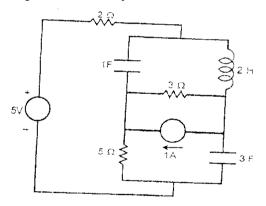
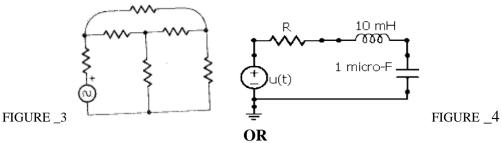
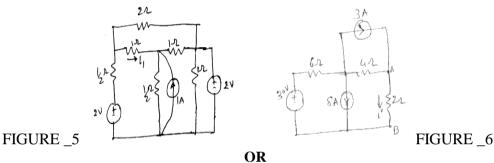
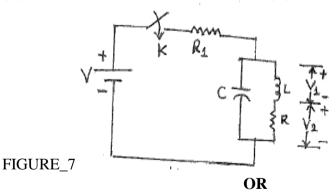



FIGURE _2


(b) Define : Charge, Current, Potential difference, Voltage, Node, Loop and Independent source and Dependent sources.

OR

- (b) State the procedure to obtain solution of a network using Laplace transform method. Explain with suitable example. State advantage of Laplace method over classical method.
- Q.3 (a) Define the time-constant of RL and RC networks and explain the significance of the time-constant, with calculation and sketches.
 - (b) For a resistive network shown in Figure _3, draw graph and tree of the network. Also develop the fundamental cut-set matrix. Assume suitable data and notation if required by mentioning it clearly.


- **Q.3** Determine the voltage across the capacitor in the RLC circuit as shown (a) in Figure. 4, if R=400 Ohm using Laplace transform.
 - State and explain Norton's theorem, with suitable network & prove it. **(b)**
- 0.4 (a) Write down voltage and current relationships in resistor, inductor and 08 capacitor. Also mention the initial and final condition for R,L and C components in the different cases.
 - Explain various source transformation techniques. Using Source **(b)** 06 transformation techniques find current "i₁" in the network shown in Figure-5..

06

08

- State and explain Superposition Theorem. Hence using this find V_{ab} in Figure-6. 08 0.4 (a)
 - Explain incident matrix of a linear oriented graph with example. 06 **(b)**
- Derive formulae to convert given 'Y' parameters into 'h' parameters. 06 **Q.5** (a)
 - **(b)** For the network shown in Figure_7, switch K is closed at time t = 0 with zero 08 inductor current and zero capacitor voltage. Solve for
 - (i) V1 and V2 at t = 0+
- (ii) V1 and V2 at $t = \infty$
- (iii) dV1/dt and dV2/dt at t = 0+
- (iv) d2V2/dt2 at t = 0+

- Find the equivalent inductance for the series and the parallel connections **Q.5 06** of L1 and L2 if their mutual inductance is M.
 - **(b)** Discuss concept of poles and zeros in a network function. Also mention its 08 significance in circuit analysis.
