Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (OLD) - EXAMINATION - SUMMER 2018

Subject Code: 130901 Date: 23/05/2018

Subject Name: Circuits and Networks

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the terms (i) Charge (ii) Current (iii) Potential difference (iv) Node
 (v) Independent current source (vi) Dependent voltage source (vii) Lumped parameter
 - (b) Using nodal analysis find the current and voltage drop of 5 Ω resister. 07

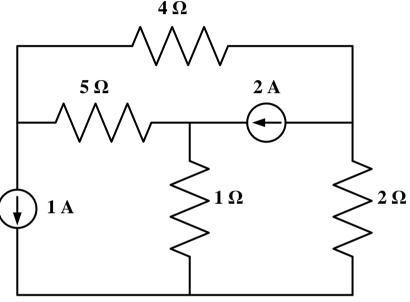


Figure 1Network of Q. 1 (b)

Q.2 (a) Find the Norton's equivalent circuit across terminal a-b.

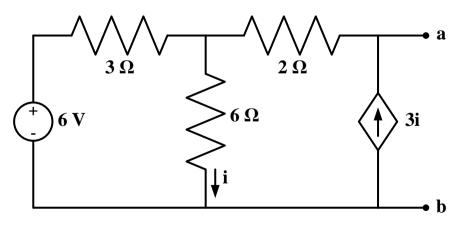


Figure 2 Network of Q. 2 (a)

(b) State Maximum Power Transfer Theorem. Also derive the condition for the maximum power transfer for the DC circuit.

OR

(b) State and explain Millman's Theorem

07

- **Q.3** (a) In series R-L-C circuit, $R = 5 \Omega$, L = 1 H and C = 1 F. Obtain i (t) when a DC voltage of 20 V is applied at t = 0.
 - (b) Explain the Dot Convention Rule for the magnetically coupled network. Explain the method to put the Dots on different linked coils using suitable example.

OR

Q.3 (a) A 10 μ F capacitor in RC circuit has initial charge of 100 μ C with the polarities shown in circuit. At t = 0, the switch being closed, a DC voltage of 100 V is applied. Find the expression of current.

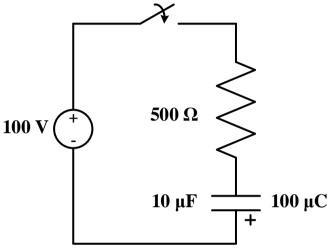


Figure 3 Network of Q. 3 (a)

- (b) What is time-constant of R-L circuit? Derive the circuit equations for a series R-L circuit connected to a DC supply.
- Q.4 (a) Obtain the pole zero plot in the s-plane of driving point impedance function 07 for the given network.

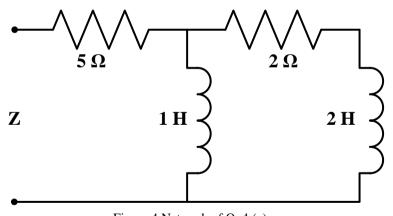


Figure 4 Network of Q. 4 (a)

(b) Explain the procedure to obtain the solution of Laplace transform technique. 07State its advantages over classical method.

OR

Q.4 (a) Using Laplace transformation techniques, obtain the complete expression of current after closing the switch. Battery voltage is applied for a steady state period. Assume R1 = 1 Ω , R2 = 2 Ω , L = 1 H, E = 10 V.

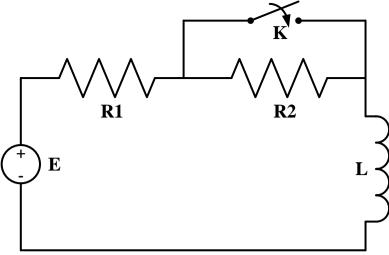
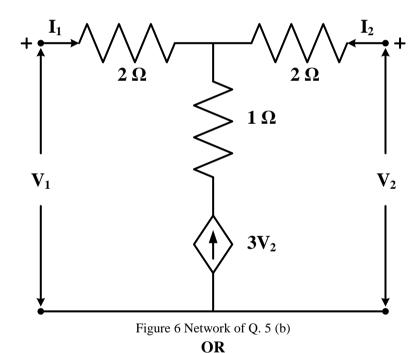



Figure 5 Network of Q. 4 (a)

- Q.4 (b) Write down voltage and current relationships in resistor, inductor and capacitor. Also mention the initial and final condition for R, L and C components in the different cases.
- Q.5 (a) Explain the various two port parameters in brief. Hence derive the expression of ABCD parameters in terms of Z parameters.
 - (b) Find the Y parameter of the given network. 07

- Q.5 (a) Derive inter relationship between incidence matrix (A), fundamental tie set matrix (Bf) and fundamental cut set matrix (Qf).