Seat No.: \_\_\_\_\_ Enrolment No.\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER-III • EXAMINATION - WINTER • 2014

Subject Code: 130901 Date: 01-01-2015

**Subject Name: Circuits and Networks** 

Time: 02.30 pm - 05.00 pm Total Marks: 70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the terms (i) Linear (ii) Bilateral (iii) Passive (iv) Reciprocal (v) Time invariant (vi) Lumped parameter and (vii) Dual with reference to Network.
  - (b) Derive formulae to convert given 'Y' parameters into 'h' parameters. 07
- Q.2 (a) Calculate VX in the circuit of Figure 1 using
  (a) nodal analysis and
  - (b) Superposition.
     (b) Describe Laplace transformation method for solving differential equations; state its advantage over the classical method.

itage over the classical method.

- (b) (i) Derive Laplace transform of derivatives and integrals.(ii) Find Laplace transform of sinωt.
- Q.3 (a) Explain incident matrix of a linear oriented graph with example.

  (b) State and explain (i) Paging eity theory (ii) Newtons Theory

  07
  - (b) State and explain (i) Reciprocity theorm (ii) Nortons Theorm. 07

OR

- Q.3 (a) The incidence matrix of a graph is as shown in Fig 2 Obtain the corresponding graph.
  - (b) Prepare the circuit graph, graph tree and hence cut set matrix for circuit shown in figure 07 3.
- Q.4 (a) Using Nodal Analysis find Vo in the circuit of figure 4
  - (b) Find Vo in the circuit of figure 5 using principle of superposition. 07

OR

- Q.4 (a) Using loop Analysis find Vo in the circuit of figure 6.
  - (b) Determine the impedance seen by the source in the circuit in Fig 7. 07
- Q.5 (a) Use the differential equation approach to find i(t) for t > 0 in the circuit in Fig. 8 and plot the response including the time interval just prior to opening the switch
  - (b) Explain the dual network and concept of duality with suitable Example. 07

OR

- Q.5 (a) Discuss concept of poles and zeros in a network function.
  - **(b)** Discuss substitution theorem and steps for solution of a network using this theorem.

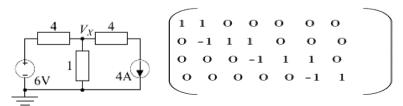
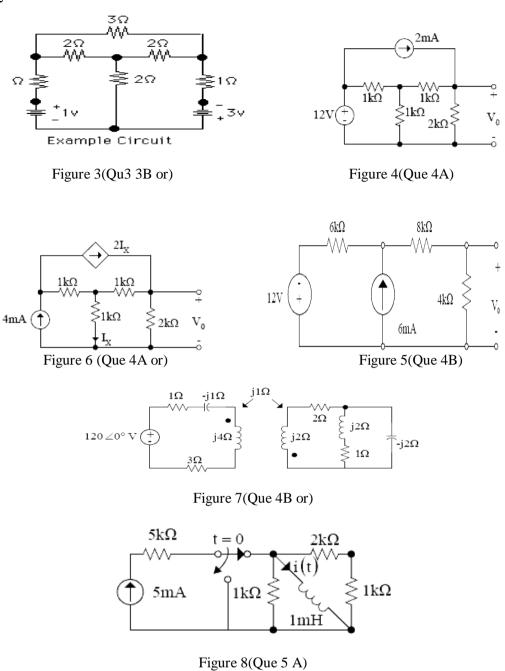




Figure 1(Que2 A)

Figure 2 (Que 3A or)

07

07



\*\*\*\*\*\*