GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(OLD) • EXAMINATION - WINTER 2016

Subject Code:130901 Date:04/01/2017

Subject Name: Circuits and Networks

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define Kirchhoff's Current Law and determine all mesh currents of a network which is shown in Figure -1.
 - (b) Define Kirchhoff's Voltage Law and determine current i in the network using node voltage analysis. The network is shown in Figure -2.
- Q.2 (a) State the Norton's Theorem. Show the mathematical steps to find out the load current of given network using Norton's theorem.
 - (b) Determine current passing through ammeter (R_A= 2 ohm) connected in the whetstone bridge. Use Thevenin's Theorem for the electrical network shown in Figure 3.

OR

- (b) For the network shown in Figure -4, determine the value of R_L to that will cause the power in R_L to have maximum value. What will be the value of power under this condition?
- Q.3 (a) Using definition, determine the Laplace transform of the following time 07 domain functions.

 - (b) Explain the significance of poles and zeros. Determine the poles and zeros of the following function and show the plot pole-zero diagrams for the same.

OR

- **Q.3** (a) Find $i(0^+)$, $di/dt(0^+)$ and $d^2i/dt^2(0^+)$ for the network shown in Figure 5. The switched is moved from position 1 to position 2 at t=0.
 - (b) Prove the following property of Laplace Transform.

 1. It will be a section as the section of the section o
- Q.4 (a) State Millman's Theorem. Prove this theorem with considering electrical 07 network.
 - (b) Figure -6 shows mutually coupled network. Draw the dot equivalent network and write the KVL equations for the same.

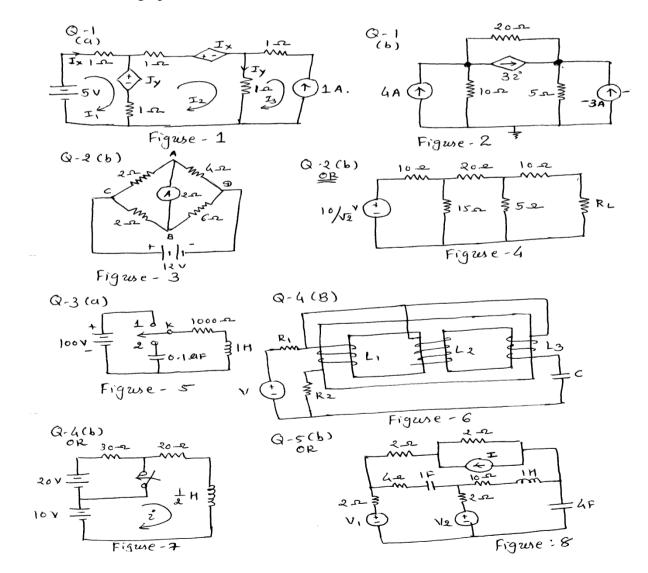
- Q.4 (a) Determine the step (DC) response of R-C series circuit. Also draw the current transient response curve for the same.
 - (b) In the network of Figure 7, a steady state is reached with the switch K open. **07** At t=0, the switch is closed. Determine i(t) for t>0.
- Q.5 (a) Explain the procedure to find out ABCD parameters of any given two port network. Also discuss the significance of each parameter.
 - (b) Derive the relationship between Z parameters in terms of Y Parameters for two port network.

OR

Q.5 (a) Define the following terms.

1. Oriented Graph

2. Sub graph


3. Tree

4. Twigs

5. Links

6. Co-tree

(b) For the network shown in Figure – 8, draw the oriented graph and write (i) Incidence matrix (ii) tieset matrix and (iii) f-cutset matrix. Also draw the oriented graph.

07