Seat No.: _____

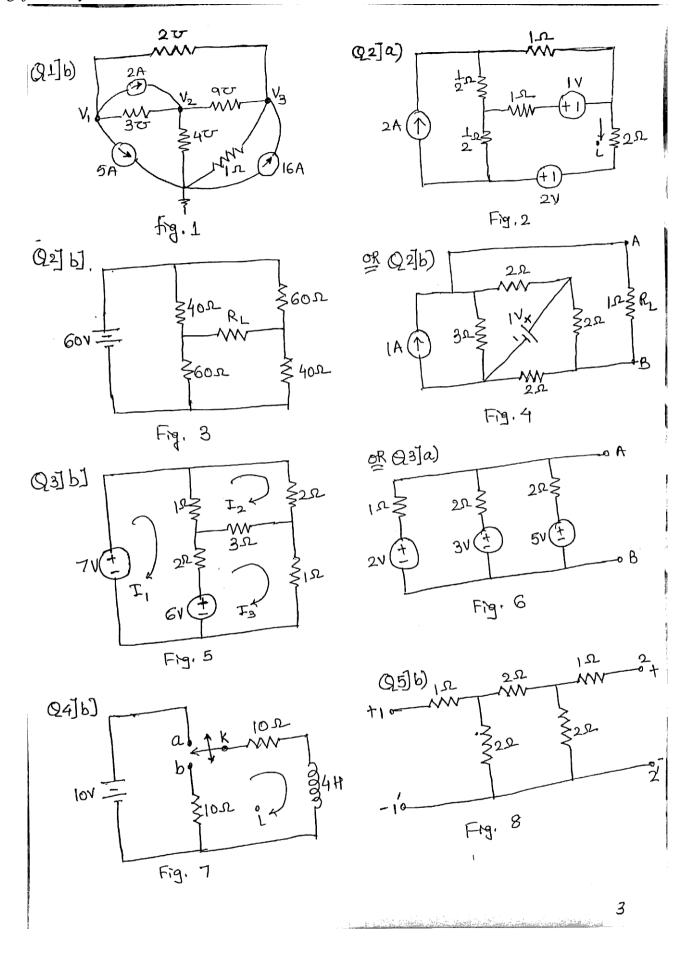
Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (OLD) EXAMINATION – WINTER 2017 Subject Code:130901 Date:17/11/201			
			17
	•	Name: Circuits and Networks	L/
Time: 10:30 AM to 01:00 PM Instructions:			7 0
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Define following terms: (1) Linear and Nonlinear networks (2) Lumped and Distributed networks (3) Passive and Active networks (4) Dependent source	07
	(b)	Explain following in Brief: Ideal and Practical Energy source. Using Node voltage analysis obtain the node voltages for the network shown in Fig. 1.	07
Q.2	(a)	For the network shown in Fig. 2, all sources are time invariant. Determine the branch current in 2 Ω resistor using source transformation method.	07
	(b)	State thevenin's theorem; find Rth and Vth for the network shown in Fig.3. Also draw thevenin's equivalent circuit. OR	07
	(b)	State Norton's theorem and find R_N , I_{sc} and I_L for the network shown in Fig.4	07
Q.3	(a)	Explain the "Dot Convention Rule" for the magnetically coupled Network. Explain the method to put the Dots on different linked coils using suitable example.	07
	(b)	State KVL and find loop currents I1, I2 and I3 using mesh current analysis for the network shown in Fig.5.	07
		OR	
Q.3 Q.4	(a)	State and explain Millman's theorem. Obtain the Millman's equivalent circuit for the circuit shown in Fig.6	07
	(b)	Explain the dual network and concept of duality with suitable Example.	07
	(a)	Explain the Laplace Transformation method and its advantages over the classical methods.	07
	(b)	State and give the proof of the Initial and Final Value Theorem. OR	07
Q.4	(a)	<u>.</u>	07
	(b)	features and explain its physical significance In the circuit shown in Fig.7, the switch K is moved from position a to position b at time t =0, the steady state having previously established. Find the particular solution for the circuit for $t \ge 0$.	07
Q.5	(a) (b)	Define Y parameters. Also derive ABCD parameters from Y parameters. Obtain z-parameters for the network shown in Fig. 8.Draw the z- parameter equivalent model and find whether the network is (a) reciprocal (b)	07 07

OR

symmetrical

Q.5 (a) What is an impulse function? For the network function H(s) given below, Find 07 the impulse response h(t).


(b) The reduced incidence matrix of an oriented graph is

07

- (i) Draw the graph
- (ii) How many trees are possible for this graph
- (iii)Write the tieset and f-cutset matrices.

.....

