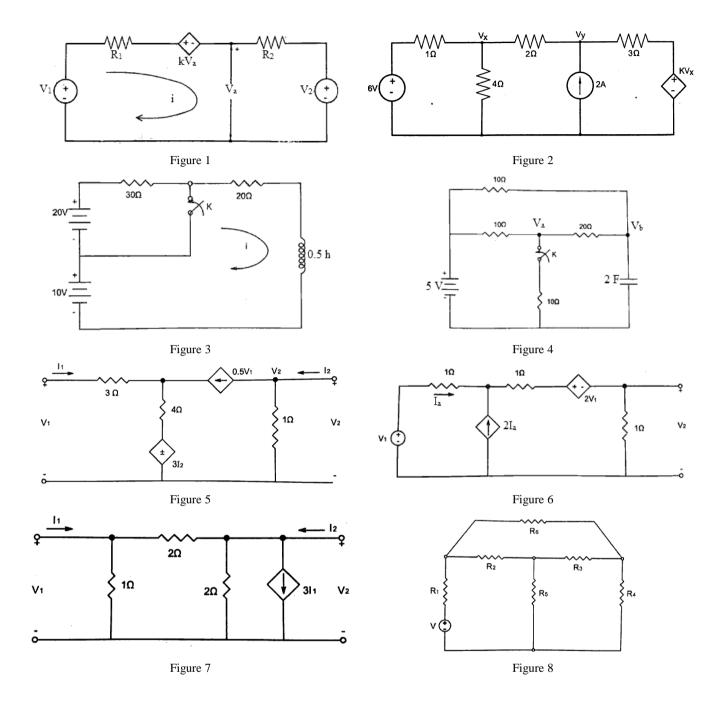
Seat No.: _____


Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) • EXAMINATION - SUMMER 2015

Subject Code: 2130901			Date:09/06/2015	
Ti	me:(structi	1	Total Marks: 7	70
Q.1	(a)	Explain the terms: (i) Linear (ii) Bilateral (iii) Passive (iv) Reciprocal (v) Time invari (vi) Oriented graph and (vii) Tree.	ant	07
	(b)	Justify: the current in an inductor and voltage across a capacitor instantaneously.	cannot change	07
Q.2	(a)	State and explain maximum power transfer theorem. Also derive the maximum power transfer to the load for DC and AC circuit.		07
	(b)	Using mesh analysis determine mesh current i and the value of k whif $V_1=10$ v and $V_2=2$ v for the network shown in figure 1. OR	hich causes $i=0$	07
	(b)	Using nodal analysis find the value of k such that V_y is zero for the in figure 2.	network shown	07
Q.3	(a)	What is significance of initial condition? Write initial conditions fo $t=0_+$ and at $t=\infty$.	r R, L and $C $ at	07
	(b)	For the network shown in figure 3 the switch k is closed at $t=0$, a steady state with the switch k open. Find the current $i(t)$ for all time \mathbf{OR}		07
Q.3	(a) (b)	What is time constant? Explain time constant in terms of RL and RC circuit. Determine $V_b(O_+)$ and $V_b(\infty)$ for the network shown in figure 4, which reaches to steady state with switch k open and at $t=0$, the switch k is closed.		07 07
Q.4	(a) (b)	Explain concept of poles and zeros and their significance in network Find the h parameters for the network shown in figure 5.	x functions.	07 07
		OR		
Q.4	(a) (b)	Find Laplace transform of $f_1(t) = \cos \omega t$ and $f_2(t) = e^{-at} \sin \omega t$. For the network shown in figure 6 determine voltage transfer gain 6	$G_{12}=V_2/V_1$.	07 07
Q.5	(a)	Derive relationship between incidence matrix (A) , fundamental tie and fundamental cut-set matrix (Q_f) .	-set matrix (B_f)	07
	(b)	Find the Z parameters for the network shown in figure 7.		07
Q.5	(a) (b)	OR Derive expression of h parameter in terms of Z and Y parameters. For the network shown in figure 8 draw the oriented graph. Also of matrix (A) , fundamental tie-set matrix (B_f) and fundamental cut-set		07 07
