Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(New) EXAMINATION - SUMMER 2016

Subject Code:2130901 Date:09/06/2016

Subject Name: Circuits and Networks

Time:10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Do as directed:

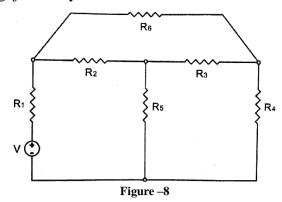
- 1 What is potential difference?
- 2 Draw the V-I characteristic for Ideal Voltage source.
- 3 Super position theorem is applicable to ______ network.

(A) Linear (B) Bilateral (C) Linear and Bilateral (D) None of these

- 4 Justify: The inductors act as an open circuit at time $t = 0_+$.
- 5 State and explain: Principle of conservation of charge.
- **6** What is transfer function?
- 7 Define: Poles and Zeros of network transfer function.
- **8** Define: Driving point impedance.
- **9** What is the condition for symmetrical network for z-parameters?
- 10 What is the condition for reciprocal network for h-parameters?
- 11 Define: Oriented Graph.
- **12** What is Tree and Co-tree?
- 13 Define: Tie-set.
- **14** Define: Incidence matrix.
- Q.2 (a) State and explain principle of Duality.
 - (b) Describe the power and energy relations for two-terminal elements (i.e. **04** Resistor, Inductor and Capacitor).
 - (c) For the circuit of figure 1, suppose $V_{in} = 1 V$. Find R so that $V_{out}/V_{in} = 150$. 07
 - (c) For the circuit of figure -2, using mesh analysis find the mesh currents I_1 , I_2 and I_3 . Also find voltage v across a dependent source.
- Q.3 (a) What is an impulse function? Find the impulse response h(t) for the network function $H(s) = 1/s^2 + 4s + 4$.
 - (b) Explain significance of poles and zeros in network functions. 04
 - (c) For the network of the figure -3, show that the equivalent Thevenin network is represented by

$$V_T = \frac{V_1}{2}(1 + p + q - pq)$$
 and $R_T = \frac{3 - q}{2}$

- Q.3 (a) Determine the Laplace transform of $f(t) = e^{-at} \cos \omega t$.
 - (b) Obtain the pole-zero plot of the transform impedance of the network shown in the figure 4.
 - (c) For the network of the figure -5, determine the Thevenin equivalent network for the load R_L .
- Q.4 (a) State and explain initial value theorem. 03
 - (b) Briefly describe the network synthesis and its application. 04
 - (c) The network shown in the figure -6 is in the steady state with the switch K closed. At t=0, the switch is opened. Determine the voltage across the switch, v_k and dv_k/dt at $t=0_+$.


14

OR **Q.4** Write the initial conditions for the inductor and capacitor at $t = 0_+$ and $t = \infty$. 03 (a) Briefly explain Positive Real Function. 04 In the network of the figure -7, the switch K is in position a for a long time. At **07** (c) t=0, the switch is moved from a to b. Find $v_2(t)$ with assumption that the initial current in the 2 h inductor is zero. **Q.5** 03 Determine y-parameters in terms of z-parameters. For the resistive network shown in the figure – 8, draw the oriented graph and 04 tree. Also develop the fundamental tie-set matrix (B_f) . For the network shown in the figure -9, determine the y-parameters. **07** (c) Derive the condition for the network to be reciprocal for ABCD-parameters. 03 **Q.5** For the resistive network shown in the figure -8, Develop the incidence matrix **(b)** 04 For the network shown in the figure -9, determine the z-parameters. **(c) 07** ***** 3Ω 7Ω $10 \Omega \lesssim V_{\text{out}}$ 2 Ω 10 Ω 5 Ω Figure - 1 Figure - 2 000000 $4\,\Omega$ 1 H 1Ω qI_1 1Ω 1Ω V_1 R_L Figure – 3 Figure – 4 1 h αi_{θ} 000 R_c 1/2 f Figure – 5 Figure - 6 1Ω 2Ω 1Ω 2 h 0 2Ω 0 U2

Figure - 7

Figure - 9

http://www.gujaratstudy.com

