Seat	TA T		
S A A A		•	

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2130901 Date: 31/05/2017

Subject Name: Circuits and Networks

Time: 10:30 AM to 01:00 PM

Total Marks:

70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	Do as directed:	
Ų.1	Do as un ecteu.	

- 1 What is potential difference?
- 2 Explain Ideal Voltage source.
- 3 Super position theorem is applicable to _____ and ____ network.
- 4 Justify: The inductors act as an open circuit at time $t = 0_+$.
- 5 State and explain: Principle of conservation of charge.
- **6** What is transfer function?
- 7 Define: Poles and Zeros of network transfer function.
- **8** Define: Driving point impedance.
- **9** What is two-port network?
- 10 What is the condition for reciprocal network for h-parameters?
- 11 Define: Oriented Graph.
- **12** What is Tree and Co-tree?
- 13 Define: Tie-set.
- 14 Define: Incidence matrix.
- Q.2 (a) State and explain maximum power transfer theorem. Derive the condition for maximum power transfer to load for DC circuit.
 - (b) Using the specified currents, write the Kirchhoff voltage law equations for the network given in figure -1.
 - (c) For the circuit of figure 2, suppose $V_{in} = 1 V$. Find R so that $V_{out}/V_{in} = 150$. 07
 - (c) For the circuit of figure -3, using mesh analysis find the mesh currents I_1, I_2 or and I_3 . Also fine voltage v across a dependent source.
- Q.3 (a) What is an impulse function? Find the impulse response h(t) for the network function $H(s) = 1/s^2 + 4s + 4$.
 - (b) For the network shown in the figure 4, determine $G_{12} = V_2/V_1$.
 - (c) For the network of the figure -5, show that the equivalent Thevenin network is represented by

$$V_T = \frac{V_1}{2}(1 + p + q - pq)$$
 and $R_T = \frac{3 - q}{2}$

- Q.3 (a) Determine the Laplace transform of $f(t) = e^{-at} \cos \omega t$.
 - (b) Obtain the pole-zero plot of the transform impedance of the network shown in the figure 6.
 - (c) For the network of the figure -7, determine the Thevenin equivalent network for the load R_L .
- Q.4 (a) State and explain initial value theorem.
 - (b) The network shown in the figure -8 is in the steady state with the switch K open. At t=0, the switch is closed. Determine the current i(t).
 - (c) The network shown in the figure -9 is in the steady state with the switch K 07

1

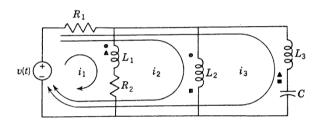
14

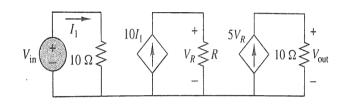
closed. At t = 0, the switch is opened. Determine the voltage across the switch, v_k and dv_k/dt at $t = 0_+$.

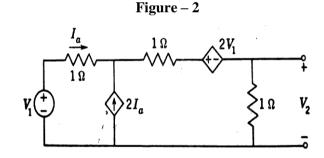
OR

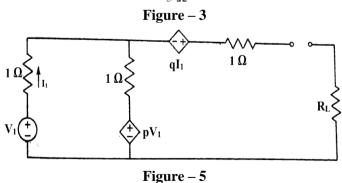
Q.4 (a) Write the initial conditions in the inductor and capacitor at $t = 0_+$ and $t = \infty$.

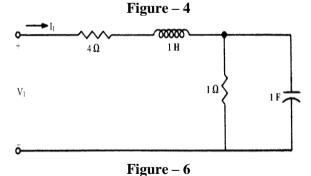
(b) In the network of the figure – 10, the switch K is in position a for a long time.


04


b) In the network of the figure – 10, the switch K is in position a for a long time. At t = 0, the switch is moved from a to b. Find $v_2(t)$ with assumption that the initial current in the 2h inductor is zero.


- (c) The network shown in the figure 11 is in the steady state with the switch K open. At t = 0, the switch is closed. Determine the values of $v_a(0_-)$ and $v_a(0_+)$.
- Q.5 (a) Determine h-parameters in terms of z-parameters.
 - (b) For the resistive network shown in the figure -12, draw the oriented graph and tree. Also develop the fundamental tie-set matrix (B_f) .
 - (c) For the network shown in the figure -13, determine the y-parameters. 07


OR


- Q.5 (a) Derive the condition for the network to be reciprocal for ABCD-parameters. 03
 - (b) For the resistive network shown in the figure -12, Develop the incidence -04 matrix A.
 - (c) For the network shown in the figure 13, determine the z-parameters. 07

