Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) - EXAMINATION – SUMMER 2018

Subject Code:2130901 Date:21/05/2018

Subject Name: Circuits and Networks

Time:10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define following terms: (a) Linear and Nonlinear Networks (b) Lumped and O3 Distributed Networks
 - (b) Construct the exact dual of the network of figure:1.
 - (c) In the network of figure:2, determine the i_2 using Source Transformation 07 method.
- Q.2 (a) Determine the inductance between the terminals for a 3 coil shown in 03 figure:3.
 - (b) Find the voltage drop across x-y for figure:4.
 - (c) Find the value of V_x in the circuit of figure:5, using mesh analysis. 07

OR

- (c) In the network of figure:6, determine the node voltages V_1 , V_2 , V_3 using node analysis.
- Q.3 (a) What is time constant? What is its significance?
 - (b) How the following elements will behave at t = 0 and $t = \infty$. Draw the equivalent network as well. (a) Inductor (b) Capacitor.
 - (c) For the network shown in figure:7, the switch k is open for a long time and closed at t = 0. Determine $v_c(t)$.

OR

- **Q.3** (a) Derive Laplace Transform of f(t) = tu(t).
 - (b) In the circuit shown in figure:8, voltage and current expressions are $v(t) = 100e^{-1000t}V$, $t \ge 0$ and $i(t) = 5e^{-1000t}mA$, $t \ge 0$. Find (a) R, C and Time Constant (τ) . (b) Initial energy stored in capacitor.
 - (c) In a network of figure:9, a steady state is reached with the switch k open. At t=0, the switch is closed. Determine the values of $v_a(0^-)$ and $v_a(0^+)$.
- Q.4 (a) State and explain superposition's theorem.
 - (b) Using Laplace transformation, solve the following differential equation. **04** $\frac{d^2i}{dt^2} + 4\frac{di}{dt} + 8i = 8u(t). \text{ Given that } i(0^+) = 3 \text{ and } \frac{di}{dt}(0^+) = -4.$
 - (c) Find the Norton's equivalent circuit across terminals AB of the circuit shown in figure: 10.

OR

- Q.4 (a) State and explain Maximum Power Theorem. 03
 - (b) Explain and derive the step response to R-L series circuit using Laplace 04 Transformation method.
 - (c) Find the Thevenin's equivalent network across the terminals A and B for figure:11.
- Q.5 (a) Write equations of Short circuit Admittance and Open Circuit Impedance 03 parameters of a two port network.
 - (b) Derive formulae to convert given y parameters into h parameters. 04
 - (c) For the network of figure: 12, find the z and y parameters.

- Q.5 (a) Explain the following terms: (a) Tree (b) Mesh (c) Graph.
 - Tree (b) Mesh (c) Graph. 03 lution of a network using Laplace Transform 04
 - (b) State the procedure to obtain solution of a network using Laplace Transform method. State advantages of Laplace method over classical method.

12 12 5Ω 0.1H 2F cum It 1052 **1**H 311 35H 20 30H 25H 27 Figure!3 1F Figure: 2 Figure: 1 12 12 √, 2V 24 10V 252 304 ₹5V 57 Figure: 6 Figure: 3 552 Figure: 65 100 10052 ice 102 21a SOHF 209 12004 C 3007 B Figure 110 Figure: 8 Figure:7 ≨۱۵۶۷ Figure: 9 452 4 I2 R3 100V V_2 100 452 25 Figure: 11 Figure: 12 I Figure: 13