

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III • EXAMINATION – WINTER • 2014

Date: 01-01-2015 Subject Code: 2130901 **Subject Name: CIRCUITS AND NETWORKS** Time: 02.30 pm - 05.00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **Q.1** Define Charge, Current, Potential difference, Lumped parameter, Time invariant, 07 (a) Branch and Tree. Calculate the node voltages for all the nodes shown in figure: 1 using nodal **(b) 07** analysis. **Q.2** State and explain the Maximum Power Transfer Theorem. Drive the condition 07 (a) for maximum power transfer to the load for DC and AC circuit. **07 (b)** Draw the dual network shown in figure : 2. Explain the dot convention rule for the magnetically coupled Network shown in **07 (b)** figure: 3. Also formulates KVL equations. For the circuit shown in figure: 4 find the voltages and currents for all circuit 0.3 07 (a) elements using mesh analysis. State and explain (1) Norton's theorem (2) Millman's theorem. 07 **(b)** OR **Q.3** (a) Find current in 20 ohm resistance in the circuit shown in figure: 5 using **07** superposition theorem. State Thevenin's theorem. Calculate current passing through 60Ω resistance in **(b)** 07 the circuit shown in figure: 6, using thevenin's theorem. 0.4 In the circuit shown in figure: 7, the switch 'K' is closed at t=0. Assuming no 07 (a) initial current through inductor. Find current at t = 0.3 sec. Also find instant of time at which voltage across R equals voltage across L. Find laplace transform of $f_1(t) = \sin \omega t$ $f_2(t) = e^{-at} \cos \omega t$. **07 (b)** OR In a circuit shown in figure: 8, the switch has been at position A for a long time **Q.4** (a) **07** and is moved to position B at t = 0. Obtain current i(t) at t > 0. **(b)** Explain the concept of Poles and zeros and their significance. 07 **07 Q.5** (a) Finds h-parameters of the circuit shown in figure: 9 Derive expression of ABCD parameters in terms of Z and Y parameters. **(b)** 07 OR Derive relationship between incidence matrix (A), fundamental cut-set matrix **07** Q.5 (a) (Q_f) and fundamental tie-set matrix (B_f) . For the network shown in figure: 10 draw the oriented graph and Obtain **07 (b)** (1) the incidence matrix (2) tieset matrix and (3) f-cutset matrix.

Circuits and Networks (2130901)
