GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III(OLD) • EXAMINATION - WINTER 2016

		Code:130702 Date:04/01/2017	7
	•	Name:Data and File Structure	
Time: 10:30 AM to 01:00 PM Total Mark			' 0
In	struction		
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	What is data structure? Explain different types of data structures with applications.	07
	(b)	Derive the formula to calculate address A[i, j] of 2-D array, for a Row-major order storage representation. A 2-D array defined as A[r, c] where $1 \le r \le 4$, $5 \le c \le 8$, requires 2 bytes of memory for each element. If the array is stored in Row-major order form, calculate the address of A[3,7] given the Base address as 2000.	07
Q.2	(a) (b)	Discuss and compare array and linked list. Discuss importance of hashing. Also discuss one of the method of hashing with an example.	07 07
		OR	
	(b)	Discuss the structure of sequential and indexed file organization.	07
Q.3	(a)	Write algorithm OR code for PUSH, POP and DISPLAY function of the STACK.	07
	(b)	Convert the following infix expression to postfix form using Stack. (($A - (B + C)) \times D$) / (E + F)	07
		OR	
Q.3	(a)	Write algorithm OR code for INSERT, DELETE and DISPLAY function of the QUEUE.	07
	(b)	What is a priority queue? Discuss the array implementation of priority queue.	07
Q.4	(a) (b)	Write C code to insert a node at the end of a doubly link list. Write an algorithm to merge two simple link lists having initial address L1 and L2 respectively. Also write algorithm to display the list. OR	07 07
Q.4	(a)	Write algorithm OR code for DELETE and DISPLAY functions of Circular Link List.	07
	(b)	Write C code for the following operations for a simple link list.i. Reverse: to reverse the link listii. Max: to find the largest element from the link list.	07
Q.5	(a) (b)	Write a non-recursive algorithm for Preorder traversal of a binary tree What is a sparse matrix? Explain memory representation of a sparse matrix.	07 07
Q.5	(a)	OR Discuss DFS and BFS.	07
Q.	(a) (b)	Discuss Inorder and Postorder traversal of a binary tree.	07
