Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (NEW) EXAMINATION – SUMMER 2015

Subject Code: 2130702			Date:09/06/2015	
Ti	me:(structi 1 2	et Name: DATA STRUCTURE 02.30pm-05.00pm Total Marks: 7 ions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	70	
Q.1	(a) (b)	Write a 'C' program for insertion sort and discuss its efficiency. Briefly explain various linear and non-linear data structures along with their applications.	07 07	
Q.2	(a) (b)	Write 'C' functions to: (1) insert a node at the end (2) delete a node from the beginning of a doubly linked list. Write an algorithm to reverse a string of characters using stack.	07 07	
	(b)	OR Compare: (1) Linked-list and Array (2) Circular queue and Simple Queue.	07	
Q.3	(a)(b)	Convert $(A + B) * C - D ^ E ^ (F * G)$ infix expression into prefix format showing stack status after every step in tabular form. Write an algorithm to implement insert and delete operations in a simple queue.	07 07	
Q.3	(a) (b)	OR Describe: (1) Recursion (2) Priority Queue (3) Tower of Hanoi Write a 'C' functions to: (1) insert a node at beginning in singly linked list (2) insert an element in circular queue.	07 07	
Q.4	(a) (b)	With figure, explain the following terms: (1) Depth of a tree (2) Sibling nodes (3) Strictly binary tree (4) Ancestor nodes (5) Graph (6) Minimum spanning tree (7) Degree of a vertex Generate a binary search tree for following numbers and perform in-order and post-order traversals: 50, 40, 80, 20, 0, 30, 10, 90, 60, 70	07 07	
Q.4	(a) (b)	OR Explain Right-in-threaded, left-in-threaded and full-in-threaded binary trees. Write Kruskal's algorithm for minimum spanning tree and explain with an example.	07 07	
Q.5	(a) (b)	Describe various collision resolution techniques in hashing. Write an algorithm for binary search method and discuss its efficiency.	07 07	
Q.5	(a) (b)	OR Explain Sequential, Indexed Sequential and Random file organizations. Write recursive 'C' functions for (1) in-order (2) pre-order and (3) post-order traversals of binary search tree.	07 07	
