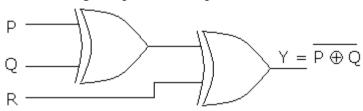
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) • EXAMINATION - SUMMER 2015


Subject Code: 2131004 Date: 27/05/2015

Subject Name: DIGITAL ELECTRONICS

Time: 02.30pm-05.00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Do as directed
 - (i) Convert $(75)_{10} = (\underline{})_2$
 - (ii) Convert $(101011)_2 = (\underline{})_{10}$
 - (iii) Convert $(10101101)_2 = (\underline{})_{16} = (\underline{})_8$
 - (iv) What is self complementing code? Represent (472)₁₀ in 2421 self **02** complementing code.
 - (v) Find the logic required at R input.

- (b) (i) Convert (96)₁₀ to its equivalent gray code and EX-3 code.
 - (ii) Perform addition in BCD format $(79)_{BCD} + (16)_{BCD}$ 03
- Q.2 (a) Reduce the given function using K-map and implement the same using gates. $F(A,B,C,D) = \sum_{i} m(0,1,3,7,11,15) + \sum_{i} d(2,4)$
 - (b) Design a circuit for 2-bit magnitude comparator.

OR

- **(b)** Design 3-bit even parity generator circuit.
- Q.3 (a) (i) State De Morgan's theorems and prove with the help of truth table.
 - (ii) Convert F(A, B, C) = BC + A into standard minterm form. 03
 - (b) Draw the truth table of full adder and implement using minimum number of logic gates.

OR

- Q.3 (a) (i) Discuss NAND gate as universal gate (implement NOT, AND, OR & NOR 04 gate using NAND gate).
 - (ii) Perform subtraction of $(78)_{10}$ $(58)_{10}$ using 2's complement method. **03**
 - (b) Draw the truth table of full subtractor and implement using minimum number of logic gates. 07
- Q.4 (a) Design 4 X 16 decoder using two 3 X 8 decoder. 07
 - (b) Convert D flip flop into SR flip flop 07

07

01

07

07

07

1	,	/		• .	. 1	
httn	• / /	www.	OIL	iarate:	tuda	com
шир	•//	VV VV VV .	Zu.	ıaı ats	ιuuγ	·COII

Q.4 (a)		Implement the given function using 8 X 1 Multiplexer			
		$F(A,B,C,D) = \sum m(0,1,2,3,5,8,9,11,14)$			
	(b)	With the help of function table and circuit diagram explain the working of clocked SR flip flop.			
Q.5 (a)		Design 4-bit ripple counter using negative edge triggered JK flip flop.			
	(b)	Compare ROM, PLA and PAL			
		OR			
Q.5	(a)	With neat sketch design 4-bit bidirectional shift register.	07		
	(b)	Define followings (i to iv with respect to logic families and v to vii with respect	07		
		to finite state machine)			
		(i) Fan in			
		(ii) Fan out			
		(iii) Noise Margin			
		(iv) Propogation delay			
		(v) State table			
		(vi) Melay machine			
		(vii) Moore machine			
