Seat	No.:	

Subject Code:2131004

Enrolment No.____

Date:27/05/2016

GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III(New) EXAMINATION – SUMMER 2016

•	•	Name:Digital Electronics :30 AM to 01:00 PM Total Mar	l-«. 70
			rks: /u
Instr		ns: Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		1-gur 00 00 viiv 1-g-10	
Q.1		Short Questions.	14
	1.	What is difference between latch and flip-flop?	
	2.	Define Fan-out.	
	3.	What is the use of state diagram?	
	4.	Which gates are called as universal gates? What are its advantages?	
	5.	State the associative property of Boolean algebra	
	6.	List the types of ROM.	
	7.	What are called Don't care conditions?	
	8.	What is propagation delay?	
	9.	What is prime implicant?	
	10.	· ·	
	11.		
	12.	ϵ	
	13.	1	
	14.	Define Nibble.	
Q.2	(a)	Explain the working of multiplexer.	3
Q. <u>2</u>	(b)		4
	(c)	Explain two input CMOS NAND gate.	7
	(0)	OR	•
	(c)	Write short note on half adder and full adder.	7
	(-)		
Q.3	(a)	Define the following terms.	3
	. ,	I. Noise Margin II. PROM III. Negative Logic	
	(b)	What are the different types of the codes used in digital systems? Explain	4
		them.	
	(c)	Design 4 bit binary to gray code converter.	7
		OR	
Q.3	(a)		3
		I. Given that $(16)_{10} = (100)_x$, find the value of x.	
		II. Add (6E) ₁₆ and (C5) ₁₆	
		III. $(4433)_5 = ()_{10} = ()_2$	
	(b)		4
		I. $(1011011101101110)_2 = ($ $)_{16}$	
		II. Subtract (45) ₈ from (66) ₈	
		III. Covert the Gray code 1101 to binary	
		IV. Find the XS-3 code of 37	_
	(c)	Show that $A^{\odot}B = AB + A'B' = (A \oplus B)' = (AB' + A'B)'$. Also construct the	e 7
		corresponding logic diagrams.	

http://www.gujaratstudy.com

Q.4	(a)	Give the applications of Decoder.	3
	(b)	Implement the given function using multiplexer $F(A,B,C) = \Sigma m(1,2,4,7)$	4
	(c)	Reduce the expression $F = \Sigma m(0,2,3,4,5,6)$ using K-map and implement using NAND gates only.	7
		OR	
Q.4	(a)	Reduce the expression $F = ((AB)' + A' + AB)'$	3
	(b)	Explain the types of finite state machines?	4
	(c)	Distinguish between combinational and sequential logic circuits. Give the applications of flip-flops.	7
Q.5	(a)	Write a short note on FPGA.	3
	(b)	Design 4-to-16 Decoder from two 3-to-8 Decoders.	4
	(c)	Design a synchronous BCD counter with JK flip-flops.	7
		OR	
Q.5 ((a)	Implement T flip flop using D flip flop.	3
	(b)	Give the comparison between synchronous and asynchronous counters.	4
	(c)	Write a note on Memory.	7
