Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2131004 Date: 05/06/2017

Subject Name: Digital Electronics

Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	A 1	Find correct answer from given choices. The output of a gate is only 1 when all of its inputs are 1	07
	_	(a) NOR (b) XOR (c) AND (d) NOT	
	2	Which gate equivalent is to bubbled OR gate? (a) AND (b) XOR (c) NOT (d) NAND	
	3	The digit F in Hexadecimal system is equivalent to —— in decimal system	
	4	(a)16 (b)15 (c)17 (d) 8 A NOT gate has	
		(a) Two inputs and one output(b) One input and one output(c) One input and two outputs(d) none of above	
	5	The digital logic family which has minimum power dissipation is (a) TTL (b) RTL	
		(a) TTL (b) KTL (c) DTL (d) CMOS	
	6	$(734)_8 = ()_{16}$	
		(a) C1D (b) DC1 (c) 1CD (d) 1DC	
	7	1 Kb corresponds to	
	ъ	(a) 1024 bits (b) 1000 bytes (c)210 bytes (d) 210 bits	0.5
	В	Define Following Terms 1. Positive Logic	05
		2. Negative Logic	
		3. Fan In	
		4. Fan out5. Noise Margin	
	C	State and Prove D'Morgan Theorem.	02
Q.2	(a)	Convert the expression $Y = A + BC$ into the standard SOP form.	03
	(b)	Simplify Using boolean laws and draw the logic diagram for the simplified expression.	04
		F: : (AMC')' - - (AM)'C' - - A'MC'' - - A(MC')' - - AM'C	
	(c)	Explain Full Subtractor with truth table and circuit diagram.	07
	(c)	OR Simplify following Boolean function by using the tabulation method	07
		$h^{\mu}:=\mathbb{R}^{n}_{+}\left(\left(0_{\mu}^{-1}\mathbb{I}_{\mu}^{-1}3_{\mu}^{-1}V_{\mu}^{-1}3_{\mu}^{-1}\mathbb{I}_{\mu}^{-1}\mathbb{I}_{\mu}^{-1}\right)^{-1}$	
Q.3	(a)	Explain magnitude comparator.	03
	(b)	Prove that NAND gate as Universal gate.	04
	(c)	Simplify following Boolean function using VEM. ##:: ABB*C*D*: A'BC**D*: ABB*C*D**: A'BB*C**D** ABB*C*D*: A'BB*C*D** A'BB*C*D** A'BB*C*D** A'BB*C**D** A'BB*C**D**D** A'BB*C**D**D**D**D**D**D**D**D**D**D**D**D**	07
		F : A 18 C 10 - - A 18 C 17 - - A 18 C 10 - - A 18 C 17 - - A 18 C 17 - - A 18 C 10 - - A 18 C 17	
0.3		OR	0.2
Q.3	(a)	State and Prove D'Morgan Theorem for three variables.	03

	(b)	Convert the decimal number 250.5 to base 3, base 4, base 7 and base 8	04
	(c)	Design a combinational circuit with four input lines that represent a decimal digit in	07
		BCD and four output lines that generates the 9's Complement of the input digit.	
Q.4	(a)	What is multiplexer? With logic circuit and function table explain the working of 4	03
	(1.)	to 1 line multiplexer.	0.4
	(b)	Simplify Boolean function using K-Map #*(****, ***, ***, **) :: **(*1, *3, *5, *8, *9, *1.1, *1.15)*	04
		eg(est xt xt x x x x x x x x x x x x x x x x	
	(c)	Implement following Boolean function using 8 : 1 multiplexer.	07
	(C)	$h^*(A_n M_n C_n M) := X(A_n M_n C_n M_n M_n M_n M_n M_n M_n M_n M_n M_n M$	07
		OR	
Q.4	(a)	State the advantages of Finite State Machine.	03
	(b)	Explain JK flip flop with its characteristic table and excitation table.	04
	` '		
	(c)	Implement Full Subtractor Circuit with the help of Decoder and logic gates.	07
0.5	(a)	Explain Master Claya IV flip flop with touth table and significances	03
Q.5	(a) (b)	Explain Master Slave JK flip-flop with truth table and circuit diagram. Draw and explain Ring counter	03
	(c)	Design a counter to generate the repetitive sequence 0, 1, 2,4,3,6.	07
	(C)	OR	07
Q.5	(a)	Plot the out waveform referenced to the clock signal assuming the initial contents of	03
	` ′	the flip-flops is q=0. Assume all flip-flops are edge triggered.	
		+VCC +VCC	
		TVCC	
		T T Output	
		Clock — CK CK	

suitable example

(b) Write short note on Programmable Logic Arrays.(c) Explain the Fundamental Mode Model of Asynchronous State Machine with

04 07