Seat	No.:	

Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-III (OLD) EXAMINATION – WINTER 2017	
Subject Code:130701 Date:14/			17
Su	bject	Name: Digital Logic Design	
	•	10:30 AM to 01:00 PM Total Marks:	70
	tructio		
	1.	Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
0.1	(a)	With next locical discuss and touth table explain all the bosic cotes including	07
Q.1	(a)	With neat logical diagram and truth table explain all the basic gates including NAND, NOR, EX-OR, and EX-NOR gate.	07
	(b)	Do as directed.	07
	(,-)	1) $(673.124)_8 = ()_2$	
		2) $(4522.25)_{10} = ()_2$	
		3) $(FACE)_{16} = ()_{10}$	
		4) $(10101010)_2 = ()_8 = ()_{16}$	
		5) Subtract using 2's complement method. $(10010)_2 - (10011)_2$	
		6) $(10101101)_2 = ($)gray	
		7) $(8620)_{10} = () BCD = ()2421$	
Q.2	(a)	Simplify the following Boolean function using K-map and implement it.	07
		1) $F(w,x,y,z) = (0,1,2,4,5,6,8,9,12,13,14)$	
	<i>a</i> .	2) $F(w,x,y) = (0,1,3,4,5,7)$	
	(b)	Explain how NAND amd NOR gates can be utilized as universal gates to	07
		implement all the basic gates. OR	
	(b)	What is a combinational circuit? Why it is required in digital circuits? Explain	07
	(0)	construction and working of R-S flip flop in detail.	07
0.0			o=
Q.3		Design and implement 3 bit odd parity generator circuit.	07
	(b)	Design a 4 bit binary to gray code converter and implement using EX-OR gates only.	07
		OR	
Q.3	(a)	Design a 3 bit full adder circuit and implement it using a half adder circuit.	07
•	(b)	Discuss in detail shift registers.	07
Q.4	(a)	With logical diagram and functional table explain the operation of 4 to 1 line	07
Q.4	(a)	multiplexer.	U7
	(b)	With logical diagram and functional table explain the operation of 3 to 8 line	07
	(2)	decoder.	0.
		OR	
Q.4	(a)	Design a 4 bit binary up counter.	07
	(b)	Explain in detail master slave J-K flip flop.	07
Q.5	(a)	With respect to register transfer logic explain inter register transfer with	07
~	()	necessary diagrams.	
	(b)	Write a detailed note on semiconductor memory and PLD	07
		OR	
Q.5	(a)	Write a short note on arithmetic, logic and shift micro operations.	07
	(b)	Discuss micro program control in detail.	07
