Date:29/11/2017

Seat No.: _____

Subject Code: 2131005

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION - WINTER 2017

Subject Name: Electrical Machines
Time: 10:30 AM to 01:00 PM
Total Marks: 70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Derive EMF equation of single-phase transformer.	03
	(b)	State conditions for parallel operation of two transformers.	04
	(c)	Explain O.C. and S.C. test on single-phase transformer.	07
$\mathbf{Q.2}$	(a)	Discuss the principle of operation of 3-phase induction motor.	03
	(b)	Explain power stages of an induction motor.	04
	(c)	Draw and explain torque-speed characteristic of 3-phase induction	07
	(0)	motor.	0.
OR			
	(c)	Discuss speed control methods of 3-phase induction motor.	07
Q.3	(c) (a)	Why 1-phase induction motor is not self-starting?	03
Q.S		State types of single-phase induction motor and explain any one.	03
	(b)	7. 7	
	(c)	Explain pitch factor and distribution factor for an alternator.	07
0.3	(.)	OR	02
Q.3	(a)	Derive EMF equation of an alternator.	03
	(b)	State advantages of stationary armature in an alternator.	04
	(c)	Explain synchronous impedance method for finding voltage	07
		regulation of alternator.	
Q.4	(a)	Explain action of commutator in d.c. generator.	03
	(b)	A long shunt compound generator delivers a load current of 50A at	04
		500V. It has armature, series field and shunt field resistances are	
		$0.05~\Omega,~0.03~\Omega$ and $250~\Omega$ respectively. Find armsture current and	
		generated voltage. Neglect brush voltage drop.	
	(c)	Describe armature control and flux control method for speed control	07
		of d.c. shunt motor.	
		OR	
Q.4	(a)	Explain working principle of d.c. motor.	03
	(b)	A 4-pole, 3-phase induction motor operates at supply of frequency	04
		50 Hz. Find synchronous speed and rotor speed of the motor when	
		slip is 0.04.	
	(c)	Explain armature reaction in d.c. generator.	07
o =			0.2
Q.5	(a)	Write a short note on Ferranti effect.	03
	(b)	Explain 3-phase 4-wire distribution system.	04
	(c)	Explain block diagram of Nuclear Power Station.	07
OR			
Q.5	(a)	Write function of super heater, economizer and ID fan.	03
	(b)	Discuss load factor and diversity factor.	04
	(c)	Explain methods of starting of synchronous motor.	07
	` /		
