Seat No.:	Enrolment No		
GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-III (NEW) - EXAMINATION – SUMMER 2017			
Subject Code: 2131905	Date: 05/06/2017		
Subject Name: Engineering Thermodyn			
Time: 10:30 AM to 01:00 PM Instructions:	Total Marks: 70		
 Attempt all questions. Make suitable assumptions wherever necessa Figures to the right indicate full marks. Use of steam table is permissible. 	ary.		
Q-1 (a) Answer the following MCQ	(7)		
i) Which one of the following is a closed system?			
(a) boiler (b) compressor	(c) I C Engine (d) Bomb calorimeter.		
	hot body. hot body is not possible. re to high pressure. to work. into work.		
 v) In regenerative feed heating vapour power cycle (a) large capacity boiler is required for a giv (b) smaller capacity condenser is required for (c) turbine output decreases due to extraction (d) all of the above. vi) The compressibility chart gives best results in (a) Critical point (b) Vicinity of critical (c) any point (d) all of the above. 	ven output. for a given output. on of steam. for all gases.		
vii) The condition for the reversibility of a cycle is(a) The process must be free from internal a(b) The process should be quasi-static.			

(c) All the processes taking place in the cycle of operation, must be extremely slow.	
(d) All of the above.	
Q-1 (b) Fill in the blanks	(7)
i) Second law of thermodynamic defines (Internal Energy/Entropy)	
ii) Throttling is an irreversible process during whichremains constant of the fluid. (Enthalpy/ Entropy)	
iii) Refrigerator and Heat pump works on law of thermodynamics. (Zero/First/Second)	
iv) For any irreversible process the net change in entropy is $\underline{\hspace{1cm}}$ (zero/>1/<1)	
v) Value of cut-off ratio is alwaysthan 1. (>1/<1)	
vi) By reheating final dryness fraction of steam is (increases/decreases)	
vii) If the cut-off ratio decreases the efficiency of diesel cycle	
(increases/decreases)	
Q-2 (a) i) State the Steady Flow Energy Equation. Explain the significance of S.F.E.E. in engineering applications.	(3)
Q-2 (a) ii) State and explain the Perpetual motion machines of Second Kind	(4)
Q-2 (b) Prove that all reversible engines working between the two constant temperatures	
Reservoirs have the same efficiency.	(7)
OR	
Q-2 (b) In a gas turbine unit, the gas flow through the turbine is 15 Kg/Sec. and the Power developed by the turbine is 12000 KW. The enthalpies of gases at inlet and Outlet are 1260 KJ/Kg and 400 KJ/Kg respectively, and the velocity of gases at the Inlet and outlet are 50 m/s and 110 m/s respectively. Calculate (i) the rate at which Heat is rejected to the turbine, and (ii) The area of the inlet pipe given that the Specific volume of gases at inlet is 0.45 m ³ /kg.	(7)
Q-3 (a) State the "Principle of increase of entropy". Explain application of entropy principle	(3)
with Any two suitable examples.	` ′
Q-3 (b) State the comparisons of First law and Second law of thermodynamics.	(4)
Q-3 (c) Two Carnot engines work in series between the source and sink temperatures of	
550 K and 350 K. If both engines develop equal power determine the intermediate temperature.	(7)
OR	
Q-3 (a) Define following terms:	(3)
i) Available energy, ii) Unavailable energy, iii) Dead State.	(0)
Q-3 (b) Give the comparisons of microscopic and macroscopic point of view of Thermodynamics.	(4)
Q-3 (c) What is irreversibility? State various types of irreversibilities and explain them.	(7)
O 4(-) D. S f. 11	(2)
Q-4 (a) Define following terms: Out off ratio	(3)
i) Cut-off ratio, ii) Mean effective pressure, iii) Steam rate. Q-4 (b) Explain in brief the characteristics of entropy.	(4)
Q-7 (b) Explain in other the characteristics of churchy.	(4)

Q-4 (c) A heat engine receives 999KW of heat at constant temperature of 286 ^o C. The heat	(7)
is rejected at 6° C. The possible heat rejected are:	
(a) 850 KW, (b) 490 KW, (c) 400 Kw. State which of the results report a reversible	e
Cycle or irreversible cycle or impossible result.	
OR	
Q-4 (a) Draw the schematic diagram of Simple Gas Turbine cycle with intercooling. Draw also T-S diagram of the cycle.	(3)
Q-4 (b) State the comparisons of Carnot vapour cycle and Rankine cycle.	(4)
 Q-4 (c) A steam turbine power plant operating on ideal Rankine cycle, receives steam at 30 bar, 350°C at the rate of 2 Kg/S and it exhausts at 0.09 bar. Calcualte the following i) Net power output, ii) Steam rate, iii) Heat rejection in condenser in KW, iv) Rankine Cycle efficiency. 	(7) gs:
Q-5 (a) Draw Rankine cycle on three usual thermodynamic co-ordinates.	(3)
Q-5 (b) Explain the effect of superheating of steam on the performance of Rankine cycle.	
Q-5 (c) Write a short note on Vander Waal's equation.	(7)
OR	
Q-5 (a) Compare Otto, Diesel and dual cycle for same compression ratio and heat supplied.	(3)
Q-5 (b) An engine operating on Diesel cycle has maximum pressure and temperature of 45 bar and 1500° C. Pressure and temperature at the beginning of compression are 1 bar and 27° C. Determine air standard efficiency of the cycle. Take adiabatic index $\gamma = 1.4$	(4) I.
Q-5 (c) Explain adiabatic mixing of perfect gases.	(7)