Seat No.: **Enrolment No.**

GUJARAT TECHNOLOGICAL UNIVERSITY

Subject Code: 2131905 Date: 25/05/2018

Subject Name: Engineering Thermodynamics

Time: 10:30 AM to 01:00 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.

Use of Steam Table is permitted. 4. Figures to the right indicate full marks. **MARKS** 0.1 (a) Define following terms: 1) Steam Rate, 2) Brake thermal Efficiency, 03 3) Compression Ratio **(b)** List out the assumptions made for analysis of Air standard cycle. 04 Derive equation for efficiency for Diesel Cycle. 07 (a) Draw Brayton cycle on p-V and T-s diagram. 03 0.2 (b) Shaw the comparison on p-V and T-s diagram for Otto and Diesel cycle 04 for same maximum pressure and temperature. A steam power plant operating on Rankine cycle receives steam from a 07 boiler at 3.5 MPa and 350° C. It is exhausted to condenser at 10 kPa. Calculate: i) Energy supplied per kg of steam generated in a boiler, ii) Quality of steam entering the condenser, iii) Rankine cycle efficiency considering feed pump work and iv) Specific steam consumption. An air standard Otto cycle is required to operate between the temperature 07 limits of 300 K and 1800 K. Estimate the optimum compression ratio and

- the corresponding thermal efficiency. Assume, $\gamma = 1.4$.
- Explain state and property also describe intensive and extensive property. 03 0.3 **(b)** Define Heat, Show that heat is an inexact differential. 04
 - One kg of gas is confined to a constant volume tank. Initial pressure and volume are 4 bar and 0.21 m³ respectively. When a heat energy of 82 kJ is supplied to the system, the final temperature of the gas becomes 127° C. Find: i) Work done, ii) Change in internal energy, iii) Specific heat at constant volume. Assume, R = 300 N-m/kg-K.

OR

- Q.3Explain Quasi-static process. 03 (a)
 - Derive an expression for displacement work for a closed system and state 04
 - One kg of air having an initial volume of 0.3 m³ is heated at constant pressure of 3.2 bar until the volume is doubled. Calculate i) heat added; ii) work done; iii) initial and final temperature of air. Take $C_p = 1.003 \text{ kJ/kg K}$ and R = 0.2927 kJ/kg K.
- Derive Steady Flow Energy Equation for Boiler. 0.4 03 (a)
 - What do you mean by thermal equilibrium? Explain it with suitable 04 example.
 - Derive the expression for the entropy change for pure substance. 07 (c)

Define the 3rd law of thermodynamics. **Q.4** (a)

- Comparison of 1st law and 2nd law of thermodynamics. 04
- State and prove Carnot's theorem for Heat Engine and also write statement 07 of Carnot's theorem in the view of refrigerator and Heat Pump.

07

07

03

http://www.gujaratstudy.com

Q.5	(a)	Define Entropy.	03
	(b)	Explain thermodynamic temperature scale.	04
	(c)	Prove the Ideal Gas equation.	07
		OR	
Q.5	(a)	Show entropy as property of the system by using Clausius inequality.	03
	(b)	Write a short note on reversibility and irreversibility.	04
	(c)	Explain p-V-T surface for a pure substance by defining i) Triple point,	07
		ii) Critical point and iii) Vapour dome	
