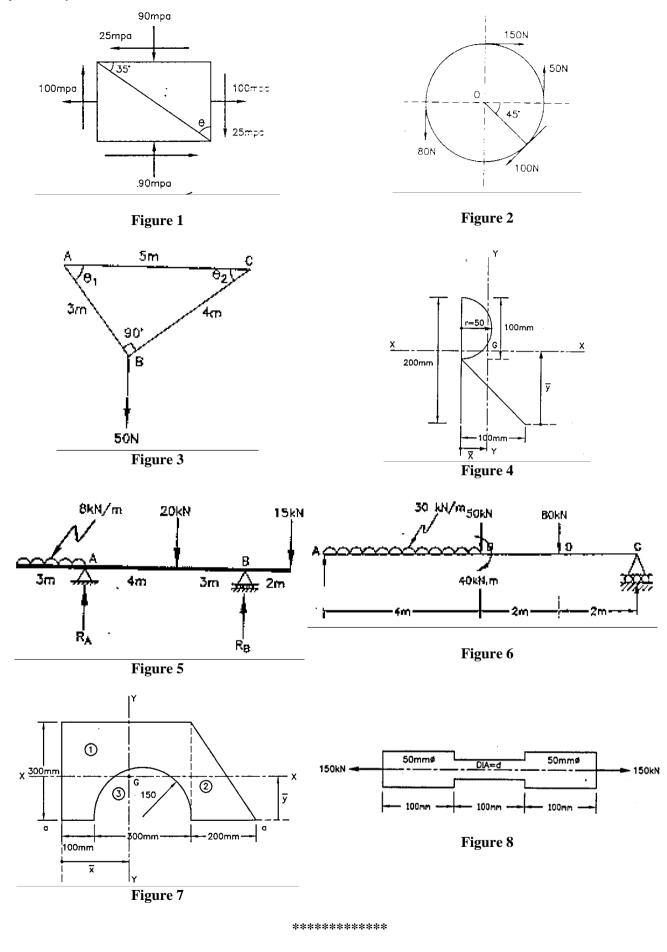
rolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) - EXAMINATION - SUMMER 2017

Subject Code: 2130003 Date: 29/05/2017

Subject Name: Mechanics of Solids


Time: 10:30 AM to 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

			MARKS
Q.1		Short Questions	14
	1	As per law. Whenever a body exerts force on other body, the	
		other body exerts similar force on the former body.	
		(Newton's, Pappu's guldinus theorem, Lami's theorem)	
	2	Newton-meter is unit offrom following.	
		(Pressure, Force, Angular Torque)	
	3	is the property by virtue of which a body offers resistance to	
		any change of its state of rest or motion.	
		(Inertia, Matter, Mass, Motion)	
	4	is the branch of dynamics, which deals with the bodies in	
		motion due to the application of forces.	
	5	Speed and distance are quantity.	
		(Vector, Scalar)	
	6	Moment is a vector, whereas couple is a vector.	
		(Fixed, Free, Null)	
	7	Define Modulus of rigidity.	
	8	Define section modulus.	
	9	One of the assumption in theory of pure bending is the value of	
		is same in tension as well as compression.	
		(Moment of Inertia, Modulus of Elasticity, Shear Stress, Bending Stress)	
	10	Define principle of Superposition.	
	11	Sketch qualitative shear stress distribution diagrams of 'I' section of the	
		beams.	
	12	Give mathematical expression of Lami's theorem.	
	13	The process of finding components of a force is called of	
		forces.	
		(Resolution, Splitting, Composition)	
	14	Twisting of an object due to applied torques is known as	
		(Bending, Shearing, Torsion, Rotation)	
Q.2	(a)	State and prove Pappu's guldinus theorem for surface area of bodies.	03
	(b)	Two tensile forces of 20 kN and 30 kN are acting at a point with an angle of	04
		60° between them. Find the magnitude and direction of the resultant force.	
	(c)	A point in a strained material is subjected to a tensile stress of 100 MPa and	07
		a compressive of 90 MPa acting on two mutually perpendicular planes and a	
		shear stress of 25 MPa acts along these planes. (Figure 1)	
		Determine following stresses on a plane inclined at 35° with plane of	
		compressive stress.	
		(i) Normal Stress, (ii) Tangential Stress, (iii) Resultant Stress.	
		OR	
	(c)	Four forces are acting tangentially to a circle of radius 3 m as shown in	07
		figure 2. Determine the resultant in magnitude and it's direction and location	

	-	with respect to center or the circle.	
Q.3	(a)	Write assumption made in the theory of pure bending.	03
	(b)	An electric lamp in street as shown in figure 3 is having 50 N weight is	04
		suspended by two wires of 4 m and 3 m length. The horizontal distance	
		between two fixed points are 5 m from which two wires were suspended.	
		Find out tension in both wires.	
	(c)	Find out centroid of thin homogeneous wire as shown in figure 4. OR	07
Q.3	(a)	Draw representative shear stress distribution diagrams for	03
		Hollow rectangle, b) I section, c) Hollow circle	
	(b)	Find support reactions for beam shown in figure 5.	04
	(c)	For the beam shown in figure 6 calculate shear force and bending moments	07
0.4	(2)	at salient points and draw shear force and bending moment diagrams.	02
Q.4	(a)	Explain various types beams and their support system.	03 04
	(b)	Calculate center of gravity of T-section having flange 20 X 2 cm and web 30 X 2 cm. also show position of C. G. on figure.	
	(c)	A beam having an I section with top flange 80 X 40 mm, web 120 X 20 mm	07
		and bottom flange 160 X 40 mm, simply supported over a span of 6m, is	
		subjected to uniformly distributed load over entire span. If bending stress is	
		limited to 40 N/mm ² tensile and 120 N/mm ² compressive, find max. value of U.D.L. the beam can carry if the larger flange is in tension.	
		OR	
Q.4	(a)	Define: (i) coefficient of friction (ii) Angle of friction	03
	(b)	A block weighing 150 kN is placed on a rough inclined plane making angle	04
	` /	30° with horizontal. If coefficient of friction is 0.25, find out the force	
		applied on the block parallel to the plane. So that the block is just on the	
		point of moving up the plane. Also find angle of friction.	
	(c)	Calculate the diameter of the shaft required to transmit 45 kW at 120 rpm.	07
		The maximum torque is likely to exceed the mean by 30% for a maximum	
		permissible shear stress of 55 N/mm ² . Calculate also the angle of twist for a	
0.5		length of 2 m. $G = 80 \times 10^3 \text{ N/mm}^2$.	0.0
Q.5	(a)	Define: (i) Lateral strain, (ii) Poisson's ratio, (iii) Modulus of rigidity.	03
	(b)	An M. S. bar of 20 mm diameter is acted upon by a tensile force of 60 kN. If	04
		the length of bar is 1.2 m and modulus of elasticity is 2.0 X 10 ⁵ N/mm ² . Find stress, strain and elongation of the bar.	
	(c)	Determine moment of inertia of a plane area as shown in figure 7 about its	07
	(0)	base line a-a.	07
		OR	
Q.5	(a)	Explain following terms:	03
	` ′	(i) rigid body, (ii) deformable body, (iii) Elastic body.	
	(b)	A 50 mm X 100 mm in depth rectangular section of a beam is simply	04
		supported at the ends with 2m span. The beam is loaded with 20 kN point	
		load at 0.5 m form R.H.S. Calculate the maximum shearing stress in the	
	, .	beam.	~ -
	(c)	For a bar shown in figure 8 find the diameter of the middle portion, if the	07
		stress at that location is to be limited to 140 N/mm ² . Also find the total	
		change in the length of the bar, $E = 2 \times 10^5 \text{ N/mm}^2$.	

