| Seat No.: | Enrolment No. |
|-----------|---------------|
|           |               |

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

**BE - SEMESTER-III(New) • EXAMINATION - WINTER 2016** 

Subject Code:2130003 Date:31/12/2016

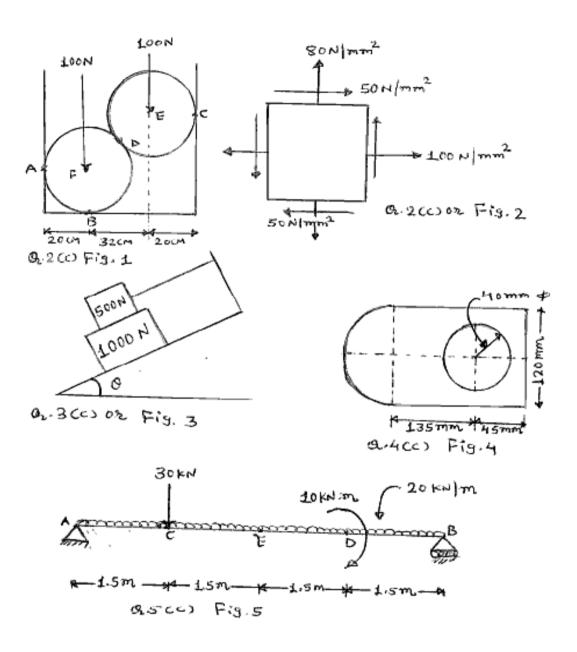
**Subject Name:Mechanics of Solids** 

Time:10:30 AM to 01:00 PM Total Marks: 70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

|     |            |                                                                                                                  | MARKS      |
|-----|------------|------------------------------------------------------------------------------------------------------------------|------------|
| Q.1 |            | Short Questions:                                                                                                 | 14         |
|     | 1          | Two unlike parallel forces, will form a (Couple, Bending Moment, Shear force).                                   |            |
|     | 2          | A particle is said to be in when the resultant force acting on it is zero. (Equilibrium, Stable, Unstable)       |            |
|     | 3          | The process of finding components of a force is calledof forces. (Resolution, Splitting, Composition)            |            |
|     | 4          | Define Law Of Transmissibility.                                                                                  |            |
|     | 5          | The Relation between Shear force and Bending moment is                                                           |            |
|     | 6          | A cylinder is a surface of revolution generated by revolving aline about a fixed axis. (Straight, circular)      |            |
|     | 7          | Co-efficient of static friction will always bethan the coefficient of kinetic friction. (greater, equal, lesser) |            |
|     | 8          | The maximum value of Poisson's ratio for most of the engineering material is (0.5, 1,1.5)                        |            |
|     | 9          | Young's modulus of elasticity for a perfectly rigid body is(zero, infinity)                                      |            |
|     | 10         | The point where the Shear force is maximum, slope of the bending moment is (maximum, minimum, zero)              |            |
|     | 11         | In a beam of I-section, the maximum shear stress is carried by the(web, flange)                                  |            |
|     | 12         | A t the point of contraflexurechanges it's sign. (shear force, bending moment, axial force)                      |            |
|     | 13         | Shear stresses on principal planes are(zero, maximum, minimum)                                                   |            |
|     | 14         | For an element in pure shear, principal planes are oriented at to the axis. $(45^0, 90^0)$                       |            |
| Q.2 | (a)        | State and explain Varignon's theorem.                                                                            | 03         |
|     | <b>(b)</b> |                                                                                                                  | 04         |
|     | (c)        |                                                                                                                  | 07         |
|     | (c)        | At a point in a strained material the state of stress is as shown in                                             | 07         |
|     | (0)        | figure 2. Determine (i) Location of Principal planes (ii) Principal                                              | <b>J</b> , |


stresses. (iii) Maximum shear stress and location of plane on which it acts.

| Q.3        | (a)        | For pure bending, prove that the neutral axis coincides with the centroid of the cross section.                                                                                                                                                                                                                                                                                                                                                                                                       | 03  |
|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|            | <b>(b)</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 04  |
|            | (c)        | A solid steel shaft is subjected to a torque of 45 kN m. If the angle of twist is 0.5° per meter length of shaft and shear stress is not to exceed 90 N/mm². Find: (i) Suitable diameter of shaft (ii) Final maximum shear stress and angle of twist for diameter of shaft selected. Take G= 80 GPa.                                                                                                                                                                                                  | 07  |
| 0.0        | ( )        | OR .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.2 |
| <b>Q.3</b> | (a)        | State assumptions made in theory of pure bending.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03  |
|            | <b>(b)</b> | For a hollow circular section whose external diameter is twice the internal diameter, find the ratio of maximum shear stress to average shear stress.                                                                                                                                                                                                                                                                                                                                                 | 04  |
|            | (c)        | What should be the value of $\Theta$ in figure 3 which will make the motion of 1000N block down the plane to impend? The coefficient                                                                                                                                                                                                                                                                                                                                                                  | 07  |
|            |            | of friction for all contact surfaces is 1/3.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| Q.4        | (a)        | rigidity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 03  |
|            | <b>(b)</b> | In a tension test, a bar of 20 mm diameter undergoes elongation of 14 mm in a gauge length of 150 mm and a decrease in diameter of 0.85 mm at a tensile load of 6 kN. Determine the two physical constants Poisson's ratio and modulus of elasticity of the material.                                                                                                                                                                                                                                 | 04  |
|            | <b>(c)</b> | Determine the centroid of the plane area in which a circular part of                                                                                                                                                                                                                                                                                                                                                                                                                                  | 07  |
|            |            | 40 mm radius, has been removed as shown in Figure 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
|            |            | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| Q.4        | (a)        | Determine the surfaces area and volume of a right circular cone with radius of base R and height h using Pappus-Guldinus theorem.                                                                                                                                                                                                                                                                                                                                                                     | 03  |
|            | <b>(b)</b> | Derive expression of moment of inertia of triangle by first principal.                                                                                                                                                                                                                                                                                                                                                                                                                                | 04  |
|            | (c)        | A 6 m long steel rod having 20 mm diameter is connected to two grips and each end at a temperature of $120^{0}$ C. Find (i) pull exerted when temperature falls to $40^{0}$ C and ends do not yield, (ii) pull exerted when temperature falls to $40^{0}$ C and ends yield by 1.1 mm, (iii) the shortening allowed for no stress at $40^{0}$ C and (iv) the minimum final temperature for shortening of 1.1 mm. Take $E_{\text{steel}} = 205$ GPa, $\alpha_{\text{steel}} = 11$ X $10^{-6}/{}^{0}$ C. | 07  |
| Q.5        | (a)        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 03  |
|            | (b)        | A solid circular steel shaft of diameter 75 mm can resist maximum shear stress of 75 N/mm <sup>2</sup> . If shaft is rotating at 150 rpm, calculate the power transmitted by shaft. Also calculate the angle of twist for 1.4m long shaft if G=100 GPa.                                                                                                                                                                                                                                               | 04  |
|            | (c)        | Draw Shear Force and Bending Moment diagram for the beam as shown in figure 5.                                                                                                                                                                                                                                                                                                                                                                                                                        | 07  |
|            |            | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _   |
| Q.5        | (a)        | *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 03  |
|            | <b>(b)</b> | A steel bar of rectangular cross section is 60 mm wide and 50 mm thickness is subjected to an axial pull of 85 kN. Calculate Normal.                                                                                                                                                                                                                                                                                                                                                                  | 04  |

Tangential and Resultant stresses on an inclined plane at  $30^0$  to the cross section of bar.

(c) A weight 750 N just starts moving down a rough inclined plane supported by a force of 250 N acting parallel to the plane and it is at the point of moving up the plane when pulled by a force of 350N parallel to the plane. Find the inclination of the plane and the coefficient of friction between the inclined plane and the weight.

07



\*\*\*\*\*\*