the Fig 8

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (NEW) EXAMINATION – WINTER 2017

Subject Code: 2130003					Date: 09/11/20	Date:09/11/2017	
Sub	ject	Name: Mech	anics of Solids				
Tim	e: 10	0:30 AM to 0	Total Marks: 70				
Instr	uction						
	1. 2.	Attempt all que	stions. Issumptions whereve	r nacassary			
	3.		ight indicate full mar				
Q.1	(a)	Define: 1] Rigid body, 2] Newton's second Law					
	(b)						
	(c)	Find magnitude and direction of resultant of force system shown in Fig.1					
Q.2	(a)	Define Moment & Couple giving two suitable examples					
	(b)	Find magnitude, direction and location of resultant wrt point 'O' of force system shown in Fig.2					
	(c)	Find the Tensions T_1 , T_2 and T_3 in respective strings as shown in Fig 3 . O ' OR					
	(c)	A chord supported at A and B carries a load of 20KN at point C and an unknown weight of W KN at D as shown in Fig 4 . Find the value of unknown weight W so that CD remains horizontal.					
Q.3	(a)	Derive with usual notations the theorem of perpendicular axis.					
	(b)	Define Centroid and With usual notations find the centroid of a triangle by method					
		of integration Find the Control of the Lamine shown in Fig. 5					
	(c)	Find the Centroid of the Lamina shown in Fig 5 .					
Q.3	(a)	OR Define: 1] Moment of Inertia, 2] Axis of symmetry					
	(a) (b)	Define: 1] Moment of Inertia, 2] Axis of symmetry Explain the Pappu's Guldinus Theorem I 0:					
	(c)	Find the moment of Inertia of an I section shown in the Fig 6 about its 0					
	(0)	centroidal axis.					
Q.4	(a)	Define: 1] Poison's Ratio 2] composite bar					
	(b)	Derive relation between bulk modulus (K), Poisson's ratio (1/m), and 0					
		modulus of elasticity (E).					
	(c)	A stepped bar carries loads as shown in Fig 7 . Find total deformation in bar 0 '					
		by taking modulus of elasticity 2x 10 ⁵ N/mm ² . Length and cross sectional					
		area are as und		D.C.	CD		
		Parameter	AB	BC	CD		
		Length Area	1.2 m 30 mm x 30 mm	1.35 m 50mm diameter	1.1 m 10 mm x 50 mm		
		OR					
Q.4	(a)	Define: 1] Lateral stress, 2] Modulus of Rigidity 03					
	(b)	Derive the equation for deformation of a body due to self weight.					
	(c)	A steel rod 25mm in diameter is inserted inside a brass tube of 25mm 07					
	` /	internal diameter and 35mm external diameter, the ends are rigidly					
		connected together. The assembly is heated by 30°. Find value and nature					
		of stress developed in both the materials. Take, $\mathbf{E}_{\text{steel}} = 200\text{GPa}$, $\mathbf{E}_{\text{brass}} = 80$					
		GPa, $\alpha_{\text{steel}} = 12 \times 10^{-6} \text{ per } ^{\circ}\text{C}$, $\alpha_{\text{brass}} = 18 \times 10^{-6} \text{ per } ^{\circ}\text{C}$.					
Q.5	(a)	Define: 1]Point of Contra flexure, 2] Shear force					
	(b)	Explain with neat sketch types of beams, types of loads and types of supports					
	(c)	Draw the Shear force and Bending Moment diagram for the beam shown in 07					

- Q.5 (a) Define: Coefficient of Static Friction and state the Laws of Friction.
 - (b) Derive with usual notation the relation between shear force and Bending 04 moment.
 - (c) At a point in a strained material the state of stress is as shown in **Fig.9**Determine (i) location of principal planes (ii) principal stresses and (iii) maximum shear stress and location of plane on which it acts

50KN F14(1) 91(0) 100 200 Q3(c) ZOKN F44(5) R=100 mm 200mm 10 mm lomm Strings are 0R &3(c) F14(6) 80N/mm2 BOKN D F149 Q 5(c)