GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-III (New) EXAMINATION - WINTER 2018

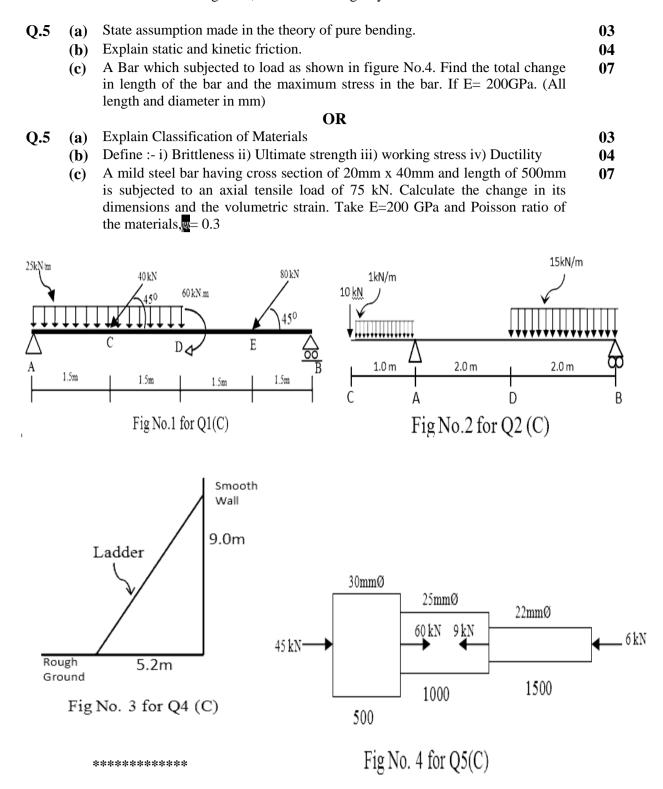
Subject Code:2130608 Date:01/12/2018

Subject Name:Strength of Materials

Time:10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.


	3.	Figures to the right indicate full marks.		
			MARKS	
Q.1	(a)	Define: - factor of safety, working stress, hardness	03	
~ ·-	(b)	Enlist various type of loads and type of supports.	04	
	(c)	Find support reaction for the beam show in Fig.1	07	
	(C)	The support reaction for the beam show in Fig.1	U7	
Q.2	(a)	Explain the sign convention taken to compute shear force and bending	03	
		moment		
	(b)	Draw a shear stress distribution diagram for the following section	04	
	(c)	i) Rectangular ii) Circular section iii)I-section iv)T-section Draw shear force and bending moment diagram for the beam as shown in fig	07	
	(C)	2.	U7	
	OR			
	(c)	A Cantilever beam of Length of 3.0 m carries UDL of 2.5 kN/m run over half	07	
	(-)	span of length from fixed end and a point load of 3 kN at a distance of 1 m		
		from free end. Calculate shear force and bending moments and plot the S.F.		
Ω 2	(a)	and B.M. diagram What is Point of Contra flexure? What is its significance?	03	
Q.3	(a)	Explain behavior of brittle materials under tension (stress strain curve for	03 04	
	(b)	brittle materials)	04	
	(c)	A beam having an I section with top flange 100mm x40mm, web 120mm	07	
		x30mm and bottom flange 200mm x40mm, simply supported over span of 5m		
		is subjected to uniformly distributed load over entire span. If bending stress is		
		limited to 40N/mm ² (tensile) and 120 N/mm ² compressive, find max. Value of		
		UDL the beam can carry if the larger flange is in tension.		
0.2	(0)	OR Explain the Principal Planes, Principal Stresses and Natural Avia	02	
Q.3	(a)	Explain the Principal Planes, Principal Stresses and Natural Axis	03	
	(b)	Explain MOHR'S Circle of stress.	04	
	(c)	At a Point strained material there is tensile stress of 100 N/mm2 upon a horizontal plane and a compressive stress of 50 N/mm2 upon a vertical plane.	07	
		There is also a shear stress of 60 N/mm2 upon each of these planes. Determine		
		the planes of maximum shear stress at the point. Determine also the resultant		
		stress on the planes of maximum shear stress		
Q.4	(a)	State Laws of Friction.	03	
•	(b)	Prove with usual notation the maximum shear stress for a rectangular section	04	
	` ′	is 1.5 times the average shear stress.		
	(c)	A uniform ladder rests against a smooth wall as shown in the figure no.3	07	
		below. If the ladder weigh's 200N the ground has a coefficient of friction of		
		0.4 and a person weighing 800N start to climb up the ladder. Determine how		
		far up the ladder they may go before the ladder starts to slip.		
OR OA () Evaluin Angle of Eviction				
Q.4	(a)	Explain Angle of Friction.	03	
	(b)	Explain assumptions in theory of pure torsion.	04	

A hollow circular Shaft of 150mm External diameter and 100 mm internal

diameter is subjected to a torque of 7.5 kN.m find Maximum shear stress and shear stress at the internal surface of the shaft. Also, calculate the angle of

07

twist for 2.5 m long shaft, if modulus of rigidity is 100GPa.

