Seat No.: \_\_\_\_\_ Enrolment No.\_\_\_\_\_

## **GUJARAT TECHNOLOGICAL UNIVERSITY**

**BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018** 

Subject Code:2140907 Date:22/11/2018

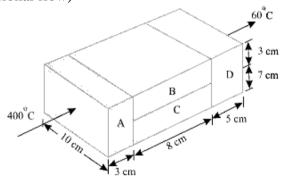
Subject Name: Applied Thermal and Hydraulic Engineering

Time: 02:30 PM TO 05:00 PM Total Marks: 70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of steam tables is permitted.

MARKS


- Q.1 (a) Name and explain briefly the various modes of Heat Transfer.
  (b) Enlist various devices used to measure pressure of the fluid. With neat
  04
  - **(b)** Enlist various devices used to measure pressure of the fluid. With neat sketch explain working and construction of Bourdon tube pressure gauge.
  - (c) With neat sketch explain Rankine cycle for thermal power plant. Plot the same cycle on T-s and h-s diagram also.
- Q.2 (a) Enlist the different methods of improving efficiency of Brayton cycle and explain any one in detail.
  - (b) What is Draft Tube? Why it is used in Reaction Turbine? 04
  - (c) Find the heat flow rate through the composite wall as shown in figure. (assume one dimensional flow)

$$k_A = 150 \text{ W/m}^{\circ}\text{C}$$

$$k_B = 30 \text{ W/m}^{\circ}\text{C}$$

$$k_C = 65 \text{ W/m}^{\circ}\text{C}$$

$$k_D = 50 \text{ W/m}^{\circ}\text{C}$$



OR

- (c) A steam Pipe of outer diameter 120 mm is covered with two layers of lagging, inside layer 45 mm thick (k = 0.08 W/m°C) and outside layer 30 mm thick (k = 0.12 W/m°C). The pipe conveys steam at temperature 262.4 °C. The outside temperature of lagging is 25°C. if the steam pipe length is 30 m long, determine
  - (i) Heat loss per hour
  - (ii) Interface temperature of lagging.

The thermal resistance of steam pipe can be neglected.

**Q.3** (a) Explain Fins and their application.

03 04

**(b)** With neat sketch, explain working of venturimeter for flow measurement.

|     | (c)        | What are the factors decide whether Kaplan, Francis or Pelton type turbine would be used in a hydroelectric project?  OR                                                                                                                                                                                                                                                                                                                                           | 07 |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Q.3 | (a)        | Define Heat, Heat Transfer and Thermodynamics.                                                                                                                                                                                                                                                                                                                                                                                                                     | 03 |
|     | (a)<br>(b) | Define the Specific Speed of Turbine and derive an expression for the same.                                                                                                                                                                                                                                                                                                                                                                                        | 03 |
|     | (c)        | A steam power plant working on Rankine Cycle has range of operation from 40 bar dry saturated to 0.05 bar. Determine:  (i) Cycle efficiency  (ii) Work ratio                                                                                                                                                                                                                                                                                                       | 07 |
|     | (0)        | (iii) Specific Steam Consumption.                                                                                                                                                                                                                                                                                                                                                                                                                                  | 02 |
| Q.4 | (a)        | What is Cavitation? What is the Concept of Black Body? Define Emissivity& Kirchhoff's Law                                                                                                                                                                                                                                                                                                                                                                          | 03 |
|     | <b>(b)</b> | for radiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 04 |
|     | (c)        | In a constant pressure open cycle gas turbine air enters the compressor at 1 bar and 18°C where it is compressed to a pressure ratio of 6. The gases enters the gas turbine at 730 °C and expands to original pressure. Calculate the work ratio and the thermal efficiency when a gas turbine plant operates on a Brayton cycle. Assume, $\gamma = 1.4$ , $Cp = 1.0$ kJ/kg K for air and $\gamma = 1.3$ , $Cp = 1.1$ kJ/kg K for gases. Neglect the mass of fuel. | 07 |
| Q.4 | (a)        | Draw inlet and outlet Velocity triangles for any Reaction turbine. Indicates various velocities with its direction.                                                                                                                                                                                                                                                                                                                                                | 03 |
|     | (b)        | Calculate the critical radius of insulation for asbestos ( $k = 0.172$ W/mK) surrounding a pipe and exposed to room air at 3300 K with h = $2.8$ W/m <sup>2</sup> K. Calculate the heat loss from a 475 K, 60 mm diameter pipe covered with the critical radius of insulation and without insulation.                                                                                                                                                              | 04 |
|     | (c)        | Explain the working of a simple air cooling system used for aircraft.                                                                                                                                                                                                                                                                                                                                                                                              | 07 |
| Q.5 | (a)        | Explain Multistage Centrifugal Pumps.                                                                                                                                                                                                                                                                                                                                                                                                                              | 03 |
| Q.S | (b)        | Give comparison between open cycle and closed cycle gas turbines                                                                                                                                                                                                                                                                                                                                                                                                   | 04 |
|     | (c)        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                              | 07 |
|     | (-)        | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| Q.5 | <b>(a)</b> | State and prove Bernoulli's equation.                                                                                                                                                                                                                                                                                                                                                                                                                              | 03 |
|     | <b>(b)</b> | Explain simple vapour compression refrigeration system with neat sketch.                                                                                                                                                                                                                                                                                                                                                                                           | 04 |
|     | (c)        | The flow rates of hot and cold water streams running through a parallel flow heat exchanger are 0.2 kg/s and 0.5 kg/s respectively. The inlet temperatures on the hot and cold side are 75°C and 20°C. the exit temperature of hot water is 45°C. If the individual heat transfer coefficient on both sides are 650 W/m²°C, calculate the area of the heat exchanger.                                                                                              | 07 |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

\*\*\*\*\*