Seat No.:

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- IV(NEW) EXAMINATION - SUMMER 2015

Subject Code: 2141905 Date:26/05/2015

Subject Name: Complex Variables & Numerical Methods

Time: 10:30am-1.30pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- Figures to the right indicate full marks.
- Q.1 Do as Directed:

14

- (1) Solve the equation $z^2 + (2i 3)z + 5 i = 0$.
- (2) Discuss the differentiability of $f(z) = x^2 + iy^2$.
- (3) Discuss the continuity of $f(z) = \begin{cases} \frac{z}{z}; & z \neq 0 \text{ at origin.} \\ 0; & z = 0 \end{cases}$
- (4) Find the image of infinite strip $0 \le x \le 1$ under the transformation $\omega = iz + 1$. Sketch the region in ω – plane.
- (5) Find the second divided difference for the argument x = 1, 2, 5 and 7 for the function $f(x) = x^2$.
- (6) Evaluate $\oint_C \frac{e^z}{(z+i)} dz$, where C: |z-1| = 1.
- (7) Expand $f(z) = \frac{z \sin z}{z^2}$ at z = 0, classify the singular point z = 0.
- (1) Find the analytic function f(z) = u + iv, if $u v = e^x(\cos y \sin y)$. **Q.2**

04

(2) If f(z) = u + iv is analytic in domain D then prove that

03

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \left| \operatorname{Re}(f(z)) \right|^2 = 2 \left| f'(z) \right|^2.$$

Using theory of residue, evaluate $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx$.

07

- **(b)** Expand $f(z) = \frac{1}{(z+1)(z-2)}$ in Laurent's series in the region (i) |z| < 107 (ii) 1 < |z| < 2 (iii) |z| > 2.
- (a) (1)Evaluate $\int_{-\infty}^{\infty} dz$ where C is along the sides of triangle having vertices z = 0, 1, i. Q.3
 - (2) Determine bilinear transformation which maps the points z = 0, i, 1 into $\omega = i, -1, \infty$ 03

04

- (1) Determine the points where $\omega = \left(z + \frac{1}{z}\right)$ is not conformal mapping. Also Find the image of 04
 - circle |z| = 2 under the transformation $\omega = \left(z + \frac{1}{z}\right)$.

(2) Find the radius of convergence of $\sum_{n=1}^{\infty} \left(\frac{6n+1}{2n+5}\right)^2 (z-2i)^n$.

03

04 (a) (1) Using residue theorem, evaluate $\int_C \frac{e^z + z}{z^3 - z} dz$, where C: $|z| = \frac{\pi}{2}$. **Q.3** 03 (2) State Cauchy integral theorem. Evaluate $\int_{C} \left(\frac{3}{z-i} - \frac{6}{(z-i)^2} \right) dz$, where C: |z| = 2. **(b)** (1) If $x + \frac{1}{x} = 2\cos\theta$, prove that (i) $x^n + \frac{1}{x^n} = 2\cos n\theta$ and 04 (ii) $\frac{x^{2n} + 1}{x^{2n-1} + x} = \frac{\cos n\theta}{\cos(n-1)\theta}$ (2) Determine and sketch the image of region $0 \le x \le 1$, $0 \le y \le \pi$ under the 03 transformation $\omega = e^z$ (1) Construct Newton's forward interpolation polynomial for the following data: 04 **Q.4** 10 y: 16 Hence evaluate y for x=5. 03 (2) Evaluate $\int_{0}^{\infty} e^{-x^2} dx$ by using Gaussian Quadrature formula with n=3. Using the power method, find the largest eigen value of the $A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$. 07 **(b)** OR (1) Find the real root of the equation $x \log_{10}^{x} = 1.2$ by Regula false method 04 **Q.4** (2) A river is 80 meters wide. The depth 'd' in meters at a distance x meters from one bank is 03 given by the following table. Calculate the area of cross section of the river using Simpson's $\frac{1}{2}$ rd rule. 0 10 20 30 40 50 60 70 80 7 7 12 15 8 y: 14 Use Lagrange's method to find polynomial of degree three for the data 07 **(b)** 0 2 1 0 *y*: Hence find the value of x = 2. State diagonal dominant property. Using Gauss-Seidel method to solve 07 **Q.5** 6x + y + z = 105, 4x + 8y + 3z = 155, 5x + 4y - 10z = 65Using the Runge- Kutta method of fourth order, Solve $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 at x = 0.2 and 07 **(b)** x = 0.4 taking h=0.1 07 Derive Euler's formula for initial value problem $\frac{dy}{dx} = f(x, y); y(x_0) = y_0$. Hence, use it find **Q.5**

the value of y for $\frac{dy}{dx} = x + y$; y(0) = 1 when x = 0.1, 0.2 with step size h=0.05. Also

Compare with analytic solution.

- (1)Use Gauss elimination method to solve the equation 04 **(b)** x+4y-z=-5, x+y-6z=-12, 3x-y-z=4.
 - (2) Use Newton-Raphson method, derive the iteration formula for \sqrt{N} . Also find $\sqrt{28}$. 03
