## **GUJARAT TECHNOLOGICAL UNIVERSITY**

BE - SEMESTER-IV(New) EXAMINATION - SUMMER 2016

Subject Code:2141905 Date:26/05/2016

**Subject Name: Complex Variables and Numerical Methods** 

Time:10:30 AM to 01:30 PM **Total Marks: 70** 

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

| Q.1 |             | Short Questions                                                                                  | MARKS  |
|-----|-------------|--------------------------------------------------------------------------------------------------|--------|
|     | 1           | Express $\sqrt{3}-i$ into polar form.                                                            | 1      |
|     | 2           | Evaluate $\Delta \cos x$ .                                                                       | 1      |
|     | 3           | Evaluate $\lim_{z \to i} \frac{z - i}{z^2 + 1}$                                                  | 1      |
|     | 4           | $z \to i z^2 + 1$                                                                                | 4      |
|     | 4           | Find the radius of convergence for the series $\sum_{n=0}^{\infty} z^n$                          | 1      |
|     | 5           | Write formula for Simpson's $3/8$ rule.                                                          | 1      |
|     | 6           | Find the fixed points of $w = \frac{z-1}{z+1}$                                                   | 1      |
|     | 7           | Give the names of two iterative methods for the solution of system of linear equations.          | 1      |
|     | 8           | State the theorem, "Cauchy's Integral Formula".                                                  | 1      |
|     | 9           | Find the pole and its order for $f(z) = \frac{e^z - 1}{z^3}$                                     | 1      |
|     | 10          | Find the third divided difference with arguments 2, 4, 9, 10 of the function $f(x) = x^3 - 2x$ . | 1      |
|     | 11          | Find Res $(f(z),1)$ for $f(z) = \frac{1}{z(z-1)}$                                                | 1      |
|     | 12<br>13    | Find the interval for $x^3 - x - 11 = 0$ in which the root lies.<br>State DeMoivre's Theorem.    | 1<br>1 |
|     | 14          | Write iterative formula to find $\sqrt{7}$ using Newton-Raphson method.                          | 1      |
| Q.2 | (a)         | Find all the values of $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^{\frac{3}{4}}$ .          | 03     |
|     | <b>(b)</b>  | Show that the function $f(z) = xy + iy$ is continuous everywhere but is                          | 04     |
|     |             | not analytic.                                                                                    |        |
|     | (c)         | Attempt the following                                                                            | 3      |
|     | (i)<br>(ii) | If $u = e^x(x\cos y - y\sin y)$ , find the analytic function $f(z)$ .                            | 4      |
|     | (II)        | Find the value of $\int_{0}^{\infty} (z)^{2} dz$ , along the real axis from 0 to 2 and then      | 4      |
|     |             | vertically from 2 to $2 + i$ .                                                                   |        |
|     | (c)         | OR Attempt the following                                                                         |        |
|     | (i)         | If $f(z)$ is a regular function of $z$ , prove that                                              | 3      |

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2.$$

(ii) Prove that 
$$\sinh^{-1} x = \log \left\{ x + \sqrt{x^2 + 1} \right\}$$

- Q.3 (a) Evaluate  $\int_C \frac{e^{2z}}{(z+1)^3} dz$ , where C:  $4x^2 + 9y^2 = 16$  using residue theorem.
  - **(b)** Find the bilinear transformation which transforms z = 2, 1, 0 into w = 1, 0. i.
  - (c) Expand  $\frac{1}{z(z^2 3z + 2)}$  about z = 0, for the regions (i)0 < |z| < 1 (ii)1 < |z| < 2 (iii)|z| > 2.

## OR

- Q.3 (a) Evaluate  $\oint_C \frac{z-1}{(z+1)^2(z-2)} dz$ , where C is the circle |z-i|=2.
  - (b) Find the image of |z-3i|=3 under the mapping  $w=\frac{1}{z}$ .
  - (c) Evaluate  $P.V. \int_{-\infty}^{\infty} \frac{x \cos x}{x^2 + 9} dx$ .
- Q.4 (a) Using Newton's divided difference formula, find a polynomial function satisfying the following data:

   x
   -4
   -1
   0
   2
   5
  - f(x) 1245 33 5 9 1335

    The table below gives the values of function y=tanx. Obtain the value of
  - tan(0.40) using Newton's backward interpolation.

     x
     0.10
     0.15
     0.20
     0.25
     0.30

     y=tanx
     0.1003
     0.1511
     0.2027
     0.2553
     0.3093
  - (c) Use the power method to find the largest eigen value and corresponding eigen vector of the matrix  $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ .

## OR

- Q.4 (a) Find the root of the equation  $x^2 4x 10 = 0$  correct to three decimal places by using bisection method.

  - Using Lagrange interpolating polynomial. (c) Solve the following system of equations by Gauss – Jordan method: 0710x + y + z = 12,2x + 10y + z = 13,x + y + 5z = 7.
- The velocity v of a particle at distance s from point on its path is given by 03 Q.5 (a) the following table: s (meter) 0 10 20 30 40 50 60 v (meter/Sec) 47 58 64 65 61 52 38

Find the time taken to travel 60 meter, using Simpson's 1/3 rule. (Use  $v = \frac{ds}{dt}$ ).

- (b) Use the method of Regula Falsi to find the root of  $x = e^{-x}$  correct to three decimal places.
- (c) Use fourth order Runge Kutta method to find the value of y at x = 1 07

04

given that  $y' = \frac{y - x}{y + x}$  such that y(0) = 1. (Take h = 0.5)

OR

- **Q.5** (a) Use Gauss Seidel method to solve: 83x + 11y 4z = 95, 7x + 52y + 13z = 104, 3x + 8y + 29z = 71.
  - (b) Evaluate the integral  $\int_{-2}^{6} (1+x^2)^{3/2} dx$  by the Gaussian formula for n=3.
  - Using Euler's method solve for y at x = 0.1 from  $\frac{dy}{dx} = x + y + xy$ , y(0) = 1, in five steps.

\*\*\*\*\*