Seat No.: _____ **Enrolment No.** GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) - EXAMINATION - SUMMER 2017 Subject Code: 2141905 Date: 30/05/2017

Subject Name: Complex Variables and Numerical Methods

Time: 10:30 AM to 01:30 PM **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

MARKS

Q.1 Short Questions

14

- 1 Write the formula of cosh(x + y)
- 2 Write the general value of Log(1+i)
- Does $\lim_{z\to 0} \frac{z}{|z|}$ exist?
- State Liouville's Theorem for Complex analysis. 4
- State Maximum Modulus Principle for Complex analysis. 5
- Find the radius of convergence of $\sum_{n=1}^{\infty} (6+8i)^n z^n$ 6
- Write the zeroes and poles of $\frac{3z+1}{z(2z-5)^2}$ with their order. 7
- Write the condition for being a harmonic function. 8
- 9 Prove that $\Delta = E - 1$
- 10 Prove that $\delta = E^{1/2} E^{-1/2}$
- Write the formula to estimate the error in calculating the integral using 11 Simpson's 3/8th rule.
- 12 What is the rate of convergence of secant method.
- 13 Write the formula of 2nd order Runge-Kutta method to solve a first order differential equation.
- 14 Write the names of two numerical methods to find an eigen value of a matrix.

Q.2

(a) Simplify $\left(\frac{1+\sin\frac{\pi}{8}+i\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{9}-i\cos\frac{\pi}{9}}\right)^8$

07

07

(b) Show that the function $f(z) = \sqrt{|xy|}$ satisfies the Cauchy-Riemann equations at the origin but f'(0) fails to exist.

(b) Find the analytic function f(z) if $u - v = \frac{e^y - \cos x + \sin x}{\cosh y - \cos x}$ with 07 $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$.

Q.3 (a) Evaluate $\int_0^{2+i} (\bar{z})^2 dz$ along the shortest path joining the end points. 05

- **(b)** Determine the Taylor's series expansion of $\frac{2z^2+9z+5}{(z-3)(z+2)^2}$ with center 05
- at $z_0 = 1$ (c) Evaluate $\int_0^\infty \frac{x^2 dx}{(x^2 + 1)(x^2 + 4)}$ 04

OR

Q.3	(a)	Evaluate	$\oint_C \frac{\cos z}{(z - \frac{\pi}{4})^3} dz$	where	C is the circle	$\left z - \frac{\pi}{2}\right = 1$ using	05
		Cauchy's	Integral formula				

(b) Evaluate
$$\oint_C \frac{z^3 - z^2 + z - 1}{z^3 + 4z} dz$$
 where C is the circle $|z| = 3$ using Cauchy's residue theorem

(c) Evaluate
$$\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$$
 04

110111 1700 10 17001										
Year	1941	1951	1961	1971	1981	1991				
Population	12	15	20	27	39	52				
in										
Thousands										

(b) Evaluate
$$\int_0^6 \frac{dx}{1+x}$$
 using Simpson's 1/3 rd rule. Hence obtain the value of $\ln 7$

(c) Find the Mobius Transform which sends the points
$$z = 1$$
, i, -1 into the points $w = 2$, i, -2

OR

Q.4 (a) Find the Lagrange's interpolation polynomial from the following
$$\begin{bmatrix} x & 0 & 1 & 4 & 5 \\ f(x) & 1 & 3 & 24 & 39 \end{bmatrix}$$

(b)	The	speed v	of a c	ar,	after it starts is shown in the following table. v is	(
	in	mt/sec	and	t	is in seconds.	

t	0	12	24	36	48	60	72	84	96	108	120
v	0	3.60	10.08	18.90	21.60	18.54	10.26	4.5	4.5	5.4	9

Using Simpson's one-third rule, find the distance travelled by the car in 2 minutes.

(c) Determine the region of
$$w$$
 – plane into which the region bounded by $x = 1$, $y = 1$ and $x + y = 1$ is mapped by the transformation $w = z^2$

Q.5 (a) Find a real root of
$$2x - log x = 7$$
 correct up to four decimal places using Newton-Raphson method.

(b) Solve
$$\frac{dy}{dx} + 2xy^2 = 0$$
 with initial condition $y(0) = 1$ for $x = 1$ in five steps using Modified Euler's Method.

(c) Solve the linear system of equations
$$x + 17y - 2z = 48$$
, $2x + 2y + 18z = 30$, $30x - 2y + 3z = 75$ correct up to four decimal places using Gauss-Jacobi method.

Q.5 (a) Find a real root of
$$3x = \sqrt{1 + sinx}$$
 correct up to four decimal places using false position method.

(b) Solve
$$\frac{dy}{dx} = x + y^2$$
 with initial condition $y(0) = 1$ for $y = 0.2$ in two steps using 4^{th} order Runge-Kutta Method

places using raise position method.

(b) Solve
$$\frac{dy}{dx} = x + y^2$$
 with initial condition $y(0) = 1$ for $x = 0.2$ in two steps using 4th order Runge-Kutta Method.

(c) Use power method to find the dominant eigen value of $\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$

05

05