Seat No.: Enrolment No. GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019 Subject Code:2141905 Date: 09/05/2019 **Subject Name: Complex Variables and Numerical Methods** Time:02:30 PM TO 05:30 PM **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. State De'Movier's. Find arg [i/(-2-2i)]. 03 0.1 (a) Define the operators Δ , ∇ and E. Prove that $E\nabla = \Delta$. 04 State Cauchy – Riemann Equations. Show that **07** (i) $f(z) = \sin z$ is everywhere analytic (ii) f(z) = xy + iy is nowhere analytic. (a) State the formula for $\sin^{-1} z$. Find $\sin^{-1} (-i)$ 0.2 03 Find analytic function f(z) = u + iv, if u = 2x(1 - y). 04 Classify the singularities of the analytic function. 07 In each of the following case, identify the singular point and its type with (i) $z^2/(z+1)$ (ii) $\sin z/z$ (iii) $(1-\cosh z)/z^3$ Use residues to evaluate the improper integral: 07 $\int \frac{x^2 \, dx}{(x^2 + 1)(x^2 + 4)}$ 03 Evaluate the integral $\int_C \overline{z} dz$, when C is the right-hand half O.3 (a) $z = 2e^{i\theta} \left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right)$, of the circle |z| = 2 from -2i to 2i. (b) Show that the mapping by w = 1/z transforms circles and lines into circles and 04 lines. Give two Laurent series expansions in powers of z for the function 07 $f(z) = 1/[z^2(1-z)]$ and specify the regions in which those expansions are valid. Find the bilinear transformation which transforms $z_1 = \infty$, $z_2 = i$, $z_3 = 0$ into 0.3 (a) 03 $w_1 = 0, w_2 = i, w_3 = \infty$. **(b)** Determine and sketch the region: **04** (i) $0 \le \arg z \le \frac{\pi}{4}$,(ii) |2z + 3| > 4, Which of them are domains? State the Cauchy's Integral Formula and its extension. Hence evaluate integral 07 $\int_C \ \frac{z+4}{z^2-2z+5} \ dz \ , \ \text{where } C \ \text{is circle} \ |z+1+i|=2.$

- **Q.4** (a) Evaluate $\int_3^7 x^2 \log x \, dx$ taking four sub-intervals by trapezoidal rule.
 - (b) Apply Bisetion method to find a real root of the equation $2x^3 5x + 1 = 0$ correct 04 to 2 decimal places.
 - (c) Given f(1)=22, f(2)=30, f(4)=82, f(7)=106, f(12)=206, find f(8) using Lagrange's **07** interpolation formula.

OR

Q.4 (a) The velocity of a car (running on a straight road) at intervals of 2 minutes are given 03 below.

Time (in min.):	0	2	4	6	8	10	12
Velocity (in km/hr):	0	22	30	27	18	7	0

Apply Simpson's 1/3rd rule to find the distance covered by the car.

- (b) Newton Raphson method find a root of the equation $x\sin x + \cos x = 0$ correct to four decimal places (taking initial guess $x_0 = \pi$).
- (c) State Striling's Interpolation formula.

 Interpolate by means of Gauss' forward formula the population for the year 1936 given the following data:

Year:	1901	1911	1921	1931	1941	1951
Population	12	15	20	27	39	52
(1000s)						

- Q.5 (a) Using secant method find a real root of the equation $x^3 5x + 1 = 0$ up to three 03 iterations.
 - (b) Use Runge-Kutta method to solve y' = xy, y(0)=1, for x = 0.2, with h=0.1.
 - (c) Using Gauss-Seidel method to solve the following system correct to 3 decimal places: 83x + 11y 4z = 95, 7x + 52y + 13z = 104, 3x + 8y + 29z = 71.

OR

- Q.5 (a) Solve $x \log_{10} x = 1.2$ by Regula Falsi method correct to two decimal places. 03
 - (b) Solve y' = 1 y, y(0) = 0 in [0, 0.3] by modified Euler's method taking h = 0.1. **04**
 - (c) Find the largest eigenvalue and corresponding eigenvector using power method, **07** for

$$A = \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 1 \\ 2 & 1 & 8 \end{bmatrix}, \text{ taking } X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}.$$
