Seat No.: \_\_\_\_\_ Enrolment No.\_\_\_\_

## GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (New) • EXAMINATION - WINTER 2016

Subject Code: 2141905 Date: 18/11/2016

**Subject Name: Complex Variables and Numerical Methods** 

Time: 02:30 PM to 05:30 PM Total Marks: 70

**Instructions:** 

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

**MARKS** 

Q.1 Short Questions

14

- Find the principle angle of  $\frac{1}{\sqrt{3}+i}$ .
- 2 Define analytic function.
- 3 Write necessary condition for differentiability of f(z).
- Find the real part of  $f(z) = \frac{1}{z 2i}$  at point 1 + i.
- 5 Define harmonic function.
- **6** Separate real and imaginary part of  $f(z) = z^2$ .
- 7 Classify the singular point z=0 for the function  $f(z) = \frac{1}{z^4 4z^2}$
- **8** Show that  $\Delta = E 1$ .
- Check whether  $w = \frac{1}{z}$  is conformal mapping or not.
- **10** Write trapezoidal rule.
- 11 When does Newton- Raphson method fail to find root of equation.
- Can we use Gauss- Seidel method to solve the system of linear equation 3x + y + 2z = 8, 2x + 3y + z = 9, x + 2y + 3z = 6.
- 13 Express  $y = x^2$  in factorial notation.
- Find [a,b] for  $f(x) = \frac{1}{x}$ .
- Q.2 (a) Check whether functions  $f(z) = z^{\frac{3}{2}}$  is analytic or not. Also find derivative of f(z).
  - (b) Find the bilinear transformation which maps z = 1, i, -1 into the points  $w = 0, 1, \infty$ .
  - (c) Evaluate the Cauchy's principle value of  $\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+9)}$ .
  - (c) Show that  $u(x, y) = e^x \cos y$  is harmonic function. Also find harmonic conjugate of u(x, y).
- Q.3 (a) Using Cauchy integral formula, Evaluate  $\int_C \frac{3z^2 + 2}{(z 2)(z^2 + 4)} dz$  where C is a circle |z 2| = 2.

03

Q.3

0.4

- 04 Find and plot all the roots of  $\sqrt[3]{8i}$ . **07** Evaluate  $\int z^2 dz$  where C is taken along triangle in z-plane having vertices  $z = \pm i$ , z = -1 taken in counter clockwise sence. 03 Expend  $f(z) = \frac{e^z}{(z-1)^2}$  about z=1. Also classify singular point z=1. Discuss the continuity of  $f(z) = \begin{cases} \frac{\overline{z}^2}{z}; & z \neq 0 \\ 0; & z = 0 \end{cases}$  at z=0. 04 **07** Expand  $f(z) = \frac{1}{(z+2)(z+4)}$  valid for the region (i) |z| < 2 (ii) 2 < |z| < 4 (iii) |z| > 4. (a) Solve by Gauss Elimination method 03 x + 2y + z = 3; 2x + 3y + 3z = 10; 3x - y + 2z = 13. 04 **(b)** Derive iterative formula to find  $\sqrt{N}$ . Use this formula to find  $\sqrt{28}$ . Determine the polynomial by Newton's forward difference formula **07**
- from the following table: 0 -10 -8 -4 40

Also find y when x=1.5.

OR

- Using Euler's method, find an approximate value of corresponding to 03 **Q.4** x=0.3, given that  $\frac{dy}{dx} = \frac{y-x}{y+x}$ ; y(0) = 1. Take h = 0.1.
  - **(b)** Find a real root of the equation  $x^3 2x 5 = 0$  using secant method 04 correct to three decimal places taking  $x_0 = 2$  and  $x_1 = 3$ .
  - Determine the interpolating polynomial of degree three using **07** Lagrange's interpolation for the table below:

0 x: 2 0 1 y:

Also find the value of y when x=2.

The velocity v of a particle at a distant s from a point on its path is 03 0.5 given by the following table: 0 30 40 50 60 s (ft) 10 20

52  $v(ft/sec) \mid 47$ 64 65 61 38

Estimate the time taken to travel 60 ft. using Simpson's  $\frac{3}{8}$  th rule.

- Using Runge- Kutta method of fourth order to calculate y(0.2) given 04 that  $\frac{dy}{dx} = x + y$ ; y(0) = 1, taking h=0.1.
- Solve by Gauss-Seidel method **07** 10x + y + z = 6; x + 10y + z = 6; x + y + 10z = 6.
- (a) Evaluate  $\int_{0}^{1} \frac{1}{1+x} dx$  by Gaussian formula with two point. 03
  - 04 **(b)** Find a positive root of  $xe^x - 2 = 0$  by the method of False position.

Find the dominant eigen value of  $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$  by power method and hence find the other eigen value also.

\*\*\*\*\*

**07**