GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-IV (NEW) EXAMINATION - WINTER 2018

Subject Code:2140608 Date:01/12/2018

Subject Name: Concrete Technology

Time: 02:30 PM TO 05:00 PM **Total Marks: 70**

Instructions:

Q.4

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

and Coefficient of Variation for the batch.

(a) Define admixtures and creep.

to concrete making.

	3. I	Figures to the rig	ht indicat	e full mar	ks.	•				
										MARKS
Q.1	 (a) How is the cement checked on site? How is the field testing important? (b) Differentiate between Mortar and concrete Setting and Hardening of cement (c) Determine the Fineness Modulus for the given Sieve analysis performed on Finaggregate 						on Fine	03 04 07		
		IS sieve size	10 mm	4.75 mm	2.36 mm	1.18 mm	600 μ	300 μ	150 μ	
		Weight retained gm	0	25	45	50	95	175	80	
Q.2	(a) (b) (c) (c)	Discuss the various factors affecting the workability of concrete. Explain different methods of curing procedure. OR								03 04 07
Q.3	(a) (b) (c)	What is alkali-silica reactivity (ASR) and how is it avoided? What are the essential characteristics of water that can be used for mixing and curing of concrete? Write short note on air entrained concrete.							03 04 07	
Q.3	(a)	OR Make a list of all the factors that affect Durability of Concrete structures.							03	
Λ.n.	(b)	·							04	
	(c)	Write short not	te on read	y mix cor	ncrete					07
Q.4	(a) (b) (c)	Write a brief note on "Rotary Kiln".						03 04 07		

OR

What are Bouge's compounds? Explain in detail how each one of these

(b) Define the term "Bulking of aggregates". Explain its significance with reference

compounds influences the strength and setting properties of cement.

03

04

07

- Q.5 (a) What are the Principles of concrete mix design?
 (b) Explain the adverse effect of excessive use of admixture?
 (c) What is non-destructive testing of in-situ fresh and hardened concretes? Discuss the pulse velocity method.
 - OR
- Q.5 (a) Using IS-10262(2009) method of mix design, find out proportions of concrete for following data:

Grade of Concrete: M 25
Degree of Control: Very good
Maximum size of Aggregate: 10 mm
Specific gravity of Cement: 3.15
Specific gravity of FA: 2.70
Specific gravity of CA: 2.82
Condition of Exposure: severe

Workability: Slump 75-100 mm

Refer table 1 to 4.

Table 1								
	RC	С	PC	Min Grade				
EXPOSURE	MINIMUM CEMENT CONTENT	MAX FREE W/C RATIO	MINIMUM CEMENT CONTENT	MAX FREE W/C RATIO	PCC	RCC		
MILD	300	0.55	220	0.6		M20		
MODERATE	300	0.50	240	0.6	M15	M25		
SEVERE	320	0.45	250	0.5	M20	M30		
VERY SEVERE	340	0.45	260	0.45	M20	M35		
EXTREME	360	0.40	280	0.4	M25	M40		

Table 2							
No.	Grade	Std. deviation					
1	10	3.5					
2	15	3.5					
3	20	4					
4	25	4					
5	30						
6	35	5					
7	40						

TABLE 3						
No	Max. size of aggregate (mm)	Maximum Water Content (kg)				
1	10	208				
2	20	186				
3	40	165				

TABLE 4							
Nominal Maximum size of aggregate,	Volume of coarse aggregate per unit volume of total aggregate for different zones of fine aggregate (For w/c ratio of 0.5						
mm	Zone IV	Zone III	Zone II	Zone I			
10	0.5	0.48	0.46	0.44			
20	0.66	0.64	0.62	0.6			
40	0.75	0.73	0.71	0.69			

Volume of coarse aggregate per unit volume of total aggregate needs to be changed at the rate of -/+ 0.01 for every +-0.05 change in w/c ratio